You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

batch_create_segment_to_index_task.py 4.7KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. import datetime
  2. import logging
  3. import time
  4. import uuid
  5. import click
  6. from celery import shared_task # type: ignore
  7. from sqlalchemy import func
  8. from sqlalchemy.orm import Session
  9. from core.model_manager import ModelManager
  10. from core.model_runtime.entities.model_entities import ModelType
  11. from extensions.ext_database import db
  12. from extensions.ext_redis import redis_client
  13. from libs import helper
  14. from models.dataset import Dataset, Document, DocumentSegment
  15. from services.vector_service import VectorService
  16. @shared_task(queue="dataset")
  17. def batch_create_segment_to_index_task(
  18. job_id: str,
  19. content: list,
  20. dataset_id: str,
  21. document_id: str,
  22. tenant_id: str,
  23. user_id: str,
  24. ):
  25. """
  26. Async batch create segment to index
  27. :param job_id:
  28. :param content:
  29. :param dataset_id:
  30. :param document_id:
  31. :param tenant_id:
  32. :param user_id:
  33. Usage: batch_create_segment_to_index_task.delay(job_id, content, dataset_id, document_id, tenant_id, user_id)
  34. """
  35. logging.info(click.style("Start batch create segment jobId: {}".format(job_id), fg="green"))
  36. start_at = time.perf_counter()
  37. indexing_cache_key = "segment_batch_import_{}".format(job_id)
  38. try:
  39. with Session(db.engine) as session:
  40. dataset = session.get(Dataset, dataset_id)
  41. if not dataset:
  42. raise ValueError("Dataset not exist.")
  43. dataset_document = session.get(Document, document_id)
  44. if not dataset_document:
  45. raise ValueError("Document not exist.")
  46. if (
  47. not dataset_document.enabled
  48. or dataset_document.archived
  49. or dataset_document.indexing_status != "completed"
  50. ):
  51. raise ValueError("Document is not available.")
  52. document_segments = []
  53. embedding_model = None
  54. if dataset.indexing_technique == "high_quality":
  55. model_manager = ModelManager()
  56. embedding_model = model_manager.get_model_instance(
  57. tenant_id=dataset.tenant_id,
  58. provider=dataset.embedding_model_provider,
  59. model_type=ModelType.TEXT_EMBEDDING,
  60. model=dataset.embedding_model,
  61. )
  62. word_count_change = 0
  63. if embedding_model:
  64. tokens_list = embedding_model.get_text_embedding_num_tokens(
  65. texts=[segment["content"] for segment in content]
  66. )
  67. else:
  68. tokens_list = [0] * len(content)
  69. for segment, tokens in zip(content, tokens_list):
  70. content = segment["content"]
  71. doc_id = str(uuid.uuid4())
  72. segment_hash = helper.generate_text_hash(content) # type: ignore
  73. max_position = (
  74. db.session.query(func.max(DocumentSegment.position))
  75. .filter(DocumentSegment.document_id == dataset_document.id)
  76. .scalar()
  77. )
  78. segment_document = DocumentSegment(
  79. tenant_id=tenant_id,
  80. dataset_id=dataset_id,
  81. document_id=document_id,
  82. index_node_id=doc_id,
  83. index_node_hash=segment_hash,
  84. position=max_position + 1 if max_position else 1,
  85. content=content,
  86. word_count=len(content),
  87. tokens=tokens,
  88. created_by=user_id,
  89. indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
  90. status="completed",
  91. completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
  92. )
  93. if dataset_document.doc_form == "qa_model":
  94. segment_document.answer = segment["answer"]
  95. segment_document.word_count += len(segment["answer"])
  96. word_count_change += segment_document.word_count
  97. db.session.add(segment_document)
  98. document_segments.append(segment_document)
  99. # update document word count
  100. dataset_document.word_count += word_count_change
  101. db.session.add(dataset_document)
  102. # add index to db
  103. VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form)
  104. db.session.commit()
  105. redis_client.setex(indexing_cache_key, 600, "completed")
  106. end_at = time.perf_counter()
  107. logging.info(
  108. click.style(
  109. "Segment batch created job: {} latency: {}".format(job_id, end_at - start_at),
  110. fg="green",
  111. )
  112. )
  113. except Exception:
  114. logging.exception("Segments batch created index failed")
  115. redis_client.setex(indexing_cache_key, 600, "error")
  116. finally:
  117. db.session.close()