import json from typing import Literal, Union, Dict, List, Any, Optional, IO import requests class DifyClient: def __init__(self, api_key, base_url: str = "https://api.dify.ai/v1"): self.api_key = api_key self.base_url = base_url def _send_request( self, method: str, endpoint: str, json: dict | None = None, params: dict | None = None, stream: bool = False ): headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } url = f"{self.base_url}{endpoint}" response = requests.request(method, url, json=json, params=params, headers=headers, stream=stream) return response def _send_request_with_files(self, method, endpoint, data, files): headers = {"Authorization": f"Bearer {self.api_key}"} url = f"{self.base_url}{endpoint}" response = requests.request(method, url, data=data, headers=headers, files=files) return response def message_feedback(self, message_id: str, rating: Literal["like", "dislike"], user: str): data = {"rating": rating, "user": user} return self._send_request("POST", f"/messages/{message_id}/feedbacks", data) def get_application_parameters(self, user: str): params = {"user": user} return self._send_request("GET", "/parameters", params=params) def file_upload(self, user: str, files: dict): data = {"user": user} return self._send_request_with_files("POST", "/files/upload", data=data, files=files) def text_to_audio(self, text: str, user: str, streaming: bool = False): data = {"text": text, "user": user, "streaming": streaming} return self._send_request("POST", "/text-to-audio", json=data) def get_meta(self, user: str): params = {"user": user} return self._send_request("GET", "/meta", params=params) def get_app_info(self): """Get basic application information including name, description, tags, and mode.""" return self._send_request("GET", "/info") def get_app_site_info(self): """Get application site information.""" return self._send_request("GET", "/site") def get_file_preview(self, file_id: str): """Get file preview by file ID.""" return self._send_request("GET", f"/files/{file_id}/preview") class CompletionClient(DifyClient): def create_completion_message( self, inputs: dict, response_mode: Literal["blocking", "streaming"], user: str, files: dict | None = None ): data = { "inputs": inputs, "response_mode": response_mode, "user": user, "files": files, } return self._send_request( "POST", "/completion-messages", data, stream=True if response_mode == "streaming" else False, ) class ChatClient(DifyClient): def create_chat_message( self, inputs: dict, query: str, user: str, response_mode: Literal["blocking", "streaming"] = "blocking", conversation_id: str | None = None, files: dict | None = None, ): data = { "inputs": inputs, "query": query, "user": user, "response_mode": response_mode, "files": files, } if conversation_id: data["conversation_id"] = conversation_id return self._send_request( "POST", "/chat-messages", data, stream=True if response_mode == "streaming" else False, ) def get_suggested(self, message_id: str, user: str): params = {"user": user} return self._send_request("GET", f"/messages/{message_id}/suggested", params=params) def stop_message(self, task_id: str, user: str): data = {"user": user} return self._send_request("POST", f"/chat-messages/{task_id}/stop", data) def get_conversations( self, user: str, last_id: str | None = None, limit: int | None = None, pinned: bool | None = None, ): params = {"user": user, "last_id": last_id, "limit": limit, "pinned": pinned} return self._send_request("GET", "/conversations", params=params) def get_conversation_messages( self, user: str, conversation_id: str | None = None, first_id: str | None = None, limit: int | None = None, ): params = {"user": user} if conversation_id: params["conversation_id"] = conversation_id if first_id: params["first_id"] = first_id if limit: params["limit"] = limit return self._send_request("GET", "/messages", params=params) def rename_conversation(self, conversation_id: str, name: str, auto_generate: bool, user: str): data = {"name": name, "auto_generate": auto_generate, "user": user} return self._send_request("POST", f"/conversations/{conversation_id}/name", data) def delete_conversation(self, conversation_id: str, user: str): data = {"user": user} return self._send_request("DELETE", f"/conversations/{conversation_id}", data) def audio_to_text(self, audio_file: IO[bytes] | tuple, user: str): data = {"user": user} files = {"file": audio_file} return self._send_request_with_files("POST", "/audio-to-text", data, files) # Annotation APIs def annotation_reply_action( self, action: Literal["enable", "disable"], score_threshold: float, embedding_provider_name: str, embedding_model_name: str, ): """Enable or disable annotation reply feature.""" # Backend API requires these fields to be non-None values if score_threshold is None or embedding_provider_name is None or embedding_model_name is None: raise ValueError("score_threshold, embedding_provider_name, and embedding_model_name cannot be None") data = { "score_threshold": score_threshold, "embedding_provider_name": embedding_provider_name, "embedding_model_name": embedding_model_name, } return self._send_request("POST", f"/apps/annotation-reply/{action}", json=data) def get_annotation_reply_status(self, action: Literal["enable", "disable"], job_id: str): """Get the status of an annotation reply action job.""" return self._send_request("GET", f"/apps/annotation-reply/{action}/status/{job_id}") def list_annotations(self, page: int = 1, limit: int = 20, keyword: str = ""): """List annotations for the application.""" params = {"page": page, "limit": limit} if keyword: params["keyword"] = keyword return self._send_request("GET", "/apps/annotations", params=params) def create_annotation(self, question: str, answer: str): """Create a new annotation.""" data = {"question": question, "answer": answer} return self._send_request("POST", "/apps/annotations", json=data) def update_annotation(self, annotation_id: str, question: str, answer: str): """Update an existing annotation.""" data = {"question": question, "answer": answer} return self._send_request("PUT", f"/apps/annotations/{annotation_id}", json=data) def delete_annotation(self, annotation_id: str): """Delete an annotation.""" return self._send_request("DELETE", f"/apps/annotations/{annotation_id}") class WorkflowClient(DifyClient): def run(self, inputs: dict, response_mode: Literal["blocking", "streaming"] = "streaming", user: str = "abc-123"): data = {"inputs": inputs, "response_mode": response_mode, "user": user} return self._send_request("POST", "/workflows/run", data) def stop(self, task_id, user): data = {"user": user} return self._send_request("POST", f"/workflows/tasks/{task_id}/stop", data) def get_result(self, workflow_run_id): return self._send_request("GET", f"/workflows/run/{workflow_run_id}") def get_workflow_logs( self, keyword: str = None, status: Literal["succeeded", "failed", "stopped"] | None = None, page: int = 1, limit: int = 20, created_at__before: str = None, created_at__after: str = None, created_by_end_user_session_id: str = None, created_by_account: str = None, ): """Get workflow execution logs with optional filtering.""" params = {"page": page, "limit": limit} if keyword: params["keyword"] = keyword if status: params["status"] = status if created_at__before: params["created_at__before"] = created_at__before if created_at__after: params["created_at__after"] = created_at__after if created_by_end_user_session_id: params["created_by_end_user_session_id"] = created_by_end_user_session_id if created_by_account: params["created_by_account"] = created_by_account return self._send_request("GET", "/workflows/logs", params=params) def run_specific_workflow( self, workflow_id: str, inputs: dict, response_mode: Literal["blocking", "streaming"] = "streaming", user: str = "abc-123", ): """Run a specific workflow by workflow ID.""" data = {"inputs": inputs, "response_mode": response_mode, "user": user} return self._send_request( "POST", f"/workflows/{workflow_id}/run", data, stream=True if response_mode == "streaming" else False ) class WorkspaceClient(DifyClient): """Client for workspace-related operations.""" def get_available_models(self, model_type: str): """Get available models by model type.""" url = f"/workspaces/current/models/model-types/{model_type}" return self._send_request("GET", url) class KnowledgeBaseClient(DifyClient): def __init__( self, api_key: str, base_url: str = "https://api.dify.ai/v1", dataset_id: str | None = None, ): """ Construct a KnowledgeBaseClient object. Args: api_key (str): API key of Dify. base_url (str, optional): Base URL of Dify API. Defaults to 'https://api.dify.ai/v1'. dataset_id (str, optional): ID of the dataset. Defaults to None. You don't need this if you just want to create a new dataset. or list datasets. otherwise you need to set this. """ super().__init__(api_key=api_key, base_url=base_url) self.dataset_id = dataset_id def _get_dataset_id(self): if self.dataset_id is None: raise ValueError("dataset_id is not set") return self.dataset_id def create_dataset(self, name: str, **kwargs): return self._send_request("POST", "/datasets", {"name": name}, **kwargs) def list_datasets(self, page: int = 1, page_size: int = 20, **kwargs): return self._send_request("GET", f"/datasets?page={page}&limit={page_size}", **kwargs) def create_document_by_text(self, name, text, extra_params: dict | None = None, **kwargs): """ Create a document by text. :param name: Name of the document :param text: Text content of the document :param extra_params: extra parameters pass to the API, such as indexing_technique, process_rule. (optional) e.g. { 'indexing_technique': 'high_quality', 'process_rule': { 'rules': { 'pre_processing_rules': [ {'id': 'remove_extra_spaces', 'enabled': True}, {'id': 'remove_urls_emails', 'enabled': True} ], 'segmentation': { 'separator': '\n', 'max_tokens': 500 } }, 'mode': 'custom' } } :return: Response from the API """ data = { "indexing_technique": "high_quality", "process_rule": {"mode": "automatic"}, "name": name, "text": text, } if extra_params is not None and isinstance(extra_params, dict): data.update(extra_params) url = f"/datasets/{self._get_dataset_id()}/document/create_by_text" return self._send_request("POST", url, json=data, **kwargs) def update_document_by_text( self, document_id: str, name: str, text: str, extra_params: dict | None = None, **kwargs ): """ Update a document by text. :param document_id: ID of the document :param name: Name of the document :param text: Text content of the document :param extra_params: extra parameters pass to the API, such as indexing_technique, process_rule. (optional) e.g. { 'indexing_technique': 'high_quality', 'process_rule': { 'rules': { 'pre_processing_rules': [ {'id': 'remove_extra_spaces', 'enabled': True}, {'id': 'remove_urls_emails', 'enabled': True} ], 'segmentation': { 'separator': '\n', 'max_tokens': 500 } }, 'mode': 'custom' } } :return: Response from the API """ data = {"name": name, "text": text} if extra_params is not None and isinstance(extra_params, dict): data.update(extra_params) url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}/update_by_text" return self._send_request("POST", url, json=data, **kwargs) def create_document_by_file( self, file_path: str, original_document_id: str | None = None, extra_params: dict | None = None ): """ Create a document by file. :param file_path: Path to the file :param original_document_id: pass this ID if you want to replace the original document (optional) :param extra_params: extra parameters pass to the API, such as indexing_technique, process_rule. (optional) e.g. { 'indexing_technique': 'high_quality', 'process_rule': { 'rules': { 'pre_processing_rules': [ {'id': 'remove_extra_spaces', 'enabled': True}, {'id': 'remove_urls_emails', 'enabled': True} ], 'segmentation': { 'separator': '\n', 'max_tokens': 500 } }, 'mode': 'custom' } } :return: Response from the API """ files = {"file": open(file_path, "rb")} data = { "process_rule": {"mode": "automatic"}, "indexing_technique": "high_quality", } if extra_params is not None and isinstance(extra_params, dict): data.update(extra_params) if original_document_id is not None: data["original_document_id"] = original_document_id url = f"/datasets/{self._get_dataset_id()}/document/create_by_file" return self._send_request_with_files("POST", url, {"data": json.dumps(data)}, files) def update_document_by_file(self, document_id: str, file_path: str, extra_params: dict | None = None): """ Update a document by file. :param document_id: ID of the document :param file_path: Path to the file :param extra_params: extra parameters pass to the API, such as indexing_technique, process_rule. (optional) e.g. { 'indexing_technique': 'high_quality', 'process_rule': { 'rules': { 'pre_processing_rules': [ {'id': 'remove_extra_spaces', 'enabled': True}, {'id': 'remove_urls_emails', 'enabled': True} ], 'segmentation': { 'separator': '\n', 'max_tokens': 500 } }, 'mode': 'custom' } } :return: """ files = {"file": open(file_path, "rb")} data = {} if extra_params is not None and isinstance(extra_params, dict): data.update(extra_params) url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}/update_by_file" return self._send_request_with_files("POST", url, {"data": json.dumps(data)}, files) def batch_indexing_status(self, batch_id: str, **kwargs): """ Get the status of the batch indexing. :param batch_id: ID of the batch uploading :return: Response from the API """ url = f"/datasets/{self._get_dataset_id()}/documents/{batch_id}/indexing-status" return self._send_request("GET", url, **kwargs) def delete_dataset(self): """ Delete this dataset. :return: Response from the API """ url = f"/datasets/{self._get_dataset_id()}" return self._send_request("DELETE", url) def delete_document(self, document_id: str): """ Delete a document. :param document_id: ID of the document :return: Response from the API """ url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}" return self._send_request("DELETE", url) def list_documents( self, page: int | None = None, page_size: int | None = None, keyword: str | None = None, **kwargs, ): """ Get a list of documents in this dataset. :return: Response from the API """ params = {} if page is not None: params["page"] = page if page_size is not None: params["limit"] = page_size if keyword is not None: params["keyword"] = keyword url = f"/datasets/{self._get_dataset_id()}/documents" return self._send_request("GET", url, params=params, **kwargs) def add_segments(self, document_id: str, segments: list[dict], **kwargs): """ Add segments to a document. :param document_id: ID of the document :param segments: List of segments to add, example: [{"content": "1", "answer": "1", "keyword": ["a"]}] :return: Response from the API """ data = {"segments": segments} url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}/segments" return self._send_request("POST", url, json=data, **kwargs) def query_segments( self, document_id: str, keyword: str | None = None, status: str | None = None, **kwargs, ): """ Query segments in this document. :param document_id: ID of the document :param keyword: query keyword, optional :param status: status of the segment, optional, e.g. completed """ url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}/segments" params = {} if keyword is not None: params["keyword"] = keyword if status is not None: params["status"] = status if "params" in kwargs: params.update(kwargs["params"]) return self._send_request("GET", url, params=params, **kwargs) def delete_document_segment(self, document_id: str, segment_id: str): """ Delete a segment from a document. :param document_id: ID of the document :param segment_id: ID of the segment :return: Response from the API """ url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}/segments/{segment_id}" return self._send_request("DELETE", url) def update_document_segment(self, document_id: str, segment_id: str, segment_data: dict, **kwargs): """ Update a segment in a document. :param document_id: ID of the document :param segment_id: ID of the segment :param segment_data: Data of the segment, example: {"content": "1", "answer": "1", "keyword": ["a"], "enabled": True} :return: Response from the API """ data = {"segment": segment_data} url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}/segments/{segment_id}" return self._send_request("POST", url, json=data, **kwargs) # Advanced Knowledge Base APIs def hit_testing( self, query: str, retrieval_model: Dict[str, Any] = None, external_retrieval_model: Dict[str, Any] = None ): """Perform hit testing on the dataset.""" data = {"query": query} if retrieval_model: data["retrieval_model"] = retrieval_model if external_retrieval_model: data["external_retrieval_model"] = external_retrieval_model url = f"/datasets/{self._get_dataset_id()}/hit-testing" return self._send_request("POST", url, json=data) def get_dataset_metadata(self): """Get dataset metadata.""" url = f"/datasets/{self._get_dataset_id()}/metadata" return self._send_request("GET", url) def create_dataset_metadata(self, metadata_data: Dict[str, Any]): """Create dataset metadata.""" url = f"/datasets/{self._get_dataset_id()}/metadata" return self._send_request("POST", url, json=metadata_data) def update_dataset_metadata(self, metadata_id: str, metadata_data: Dict[str, Any]): """Update dataset metadata.""" url = f"/datasets/{self._get_dataset_id()}/metadata/{metadata_id}" return self._send_request("PATCH", url, json=metadata_data) def get_built_in_metadata(self): """Get built-in metadata.""" url = f"/datasets/{self._get_dataset_id()}/metadata/built-in" return self._send_request("GET", url) def manage_built_in_metadata(self, action: str, metadata_data: Dict[str, Any] = None): """Manage built-in metadata with specified action.""" data = metadata_data or {} url = f"/datasets/{self._get_dataset_id()}/metadata/built-in/{action}" return self._send_request("POST", url, json=data) def update_documents_metadata(self, operation_data: List[Dict[str, Any]]): """Update metadata for multiple documents.""" url = f"/datasets/{self._get_dataset_id()}/documents/metadata" data = {"operation_data": operation_data} return self._send_request("POST", url, json=data) # Dataset Tags APIs def list_dataset_tags(self): """List all dataset tags.""" return self._send_request("GET", "/datasets/tags") def bind_dataset_tags(self, tag_ids: List[str]): """Bind tags to dataset.""" data = {"tag_ids": tag_ids, "target_id": self._get_dataset_id()} return self._send_request("POST", "/datasets/tags/binding", json=data) def unbind_dataset_tag(self, tag_id: str): """Unbind a single tag from dataset.""" data = {"tag_id": tag_id, "target_id": self._get_dataset_id()} return self._send_request("POST", "/datasets/tags/unbinding", json=data) def get_dataset_tags(self): """Get tags for current dataset.""" url = f"/datasets/{self._get_dataset_id()}/tags" return self._send_request("GET", url) # RAG Pipeline APIs def get_datasource_plugins(self, is_published: bool = True): """Get datasource plugins for RAG pipeline.""" params = {"is_published": is_published} url = f"/datasets/{self._get_dataset_id()}/pipeline/datasource-plugins" return self._send_request("GET", url, params=params) def run_datasource_node( self, node_id: str, inputs: Dict[str, Any], datasource_type: str, is_published: bool = True, credential_id: str = None, ): """Run a datasource node in RAG pipeline.""" data = {"inputs": inputs, "datasource_type": datasource_type, "is_published": is_published} if credential_id: data["credential_id"] = credential_id url = f"/datasets/{self._get_dataset_id()}/pipeline/datasource/nodes/{node_id}/run" return self._send_request("POST", url, json=data, stream=True) def run_rag_pipeline( self, inputs: Dict[str, Any], datasource_type: str, datasource_info_list: List[Dict[str, Any]], start_node_id: str, is_published: bool = True, response_mode: Literal["streaming", "blocking"] = "blocking", ): """Run RAG pipeline.""" data = { "inputs": inputs, "datasource_type": datasource_type, "datasource_info_list": datasource_info_list, "start_node_id": start_node_id, "is_published": is_published, "response_mode": response_mode, } url = f"/datasets/{self._get_dataset_id()}/pipeline/run" return self._send_request("POST", url, json=data, stream=response_mode == "streaming") def upload_pipeline_file(self, file_path: str): """Upload file for RAG pipeline.""" with open(file_path, "rb") as f: files = {"file": f} return self._send_request_with_files("POST", "/datasets/pipeline/file-upload", {}, files)