Przeglądaj źródła

feat: add property-based access control to GraphRuntimeState

- Replace direct field access with private attributes and property decorators
- Implement deep copy protection for mutable objects (dict, LLMUsage)
- Add helper methods: set_output(), get_output(), update_outputs()
- Add increment_node_run_steps() and add_tokens() convenience methods
- Update loop_node and event_handlers to use new accessor methods
- Add comprehensive unit tests for immutability and validation
- Ensure backward compatibility with existing property access patterns
tags/2.0.0-beta.1
-LAN- 1 miesiąc temu
rodzic
commit
fe3f03e50a
No account linked to committer's email address

+ 131
- 19
api/core/workflow/entities/graph_runtime_state.py Wyświetl plik

@@ -1,6 +1,7 @@
from copy import deepcopy
from typing import Any

from pydantic import BaseModel, Field
from pydantic import BaseModel, PrivateAttr

from core.model_runtime.entities.llm_entities import LLMUsage

@@ -8,21 +9,132 @@ from .variable_pool import VariablePool


class GraphRuntimeState(BaseModel):
variable_pool: VariablePool = Field(..., description="variable pool")
"""variable pool"""

start_at: float = Field(..., description="start time")
"""start time"""
total_tokens: int = 0
"""total tokens"""
llm_usage: LLMUsage = LLMUsage.empty_usage()
"""llm usage info"""

# The `outputs` field stores the final output values generated by executing workflows or chatflows.
#
# Note: Since the type of this field is `dict[str, Any]`, its values may not remain consistent
# after a serialization and deserialization round trip.
outputs: dict[str, Any] = Field(default_factory=dict)

node_run_steps: int = 0
"""node run steps"""
# Private attributes to prevent direct modification
_variable_pool: VariablePool = PrivateAttr()
_start_at: float = PrivateAttr()
_total_tokens: int = PrivateAttr(default=0)
_llm_usage: LLMUsage = PrivateAttr(default_factory=LLMUsage.empty_usage)
_outputs: dict[str, Any] = PrivateAttr(default_factory=dict)
_node_run_steps: int = PrivateAttr(default=0)

def __init__(
self,
variable_pool: VariablePool,
start_at: float,
total_tokens: int = 0,
llm_usage: LLMUsage | None = None,
outputs: dict[str, Any] | None = None,
node_run_steps: int = 0,
**kwargs,
):
"""Initialize the GraphRuntimeState with validation."""
super().__init__(**kwargs)

# Initialize private attributes with validation
self._variable_pool = variable_pool

self._start_at = start_at

if total_tokens < 0:
raise ValueError("total_tokens must be non-negative")
self._total_tokens = total_tokens

if llm_usage is None:
llm_usage = LLMUsage.empty_usage()
self._llm_usage = llm_usage

if outputs is None:
outputs = {}
self._outputs = deepcopy(outputs)

if node_run_steps < 0:
raise ValueError("node_run_steps must be non-negative")
self._node_run_steps = node_run_steps

@property
def variable_pool(self) -> VariablePool:
"""Get the variable pool."""
return self._variable_pool

@variable_pool.setter
def variable_pool(self, value: VariablePool) -> None:
"""Set the variable pool."""
self._variable_pool = value

@property
def start_at(self) -> float:
"""Get the start time."""
return self._start_at

@start_at.setter
def start_at(self, value: float) -> None:
"""Set the start time."""
self._start_at = value

@property
def total_tokens(self) -> int:
"""Get the total tokens count."""
return self._total_tokens

@total_tokens.setter
def total_tokens(self, value: int):
"""Set the total tokens count."""
if value < 0:
raise ValueError("total_tokens must be non-negative")
self._total_tokens = value

@property
def llm_usage(self) -> LLMUsage:
"""Get the LLM usage info."""
# Return a copy to prevent external modification
return self._llm_usage.model_copy()

@llm_usage.setter
def llm_usage(self, value: LLMUsage):
"""Set the LLM usage info."""
self._llm_usage = value.model_copy()

@property
def outputs(self) -> dict[str, Any]:
"""Get a copy of the outputs dictionary."""
return deepcopy(self._outputs)

@outputs.setter
def outputs(self, value: dict[str, Any]) -> None:
"""Set the outputs dictionary."""
self._outputs = deepcopy(value)

def set_output(self, key: str, value: Any) -> None:
"""Set a single output value."""
self._outputs[key] = deepcopy(value)

def get_output(self, key: str, default: Any = None) -> Any:
"""Get a single output value."""
return deepcopy(self._outputs.get(key, default))

def update_outputs(self, updates: dict[str, Any]) -> None:
"""Update multiple output values."""
for key, value in updates.items():
self._outputs[key] = deepcopy(value)

@property
def node_run_steps(self) -> int:
"""Get the node run steps count."""
return self._node_run_steps

@node_run_steps.setter
def node_run_steps(self, value: int) -> None:
"""Set the node run steps count."""
if value < 0:
raise ValueError("node_run_steps must be non-negative")
self._node_run_steps = value

def increment_node_run_steps(self) -> None:
"""Increment the node run steps by 1."""
self._node_run_steps += 1

def add_tokens(self, tokens: int) -> None:
"""Add tokens to the total count."""
if tokens < 0:
raise ValueError("tokens must be non-negative")
self._total_tokens += tokens

+ 4
- 4
api/core/workflow/graph_engine/event_management/event_handlers.py Wyświetl plik

@@ -267,10 +267,10 @@ class EventHandler:
# in runtime state, rather than allowing nodes to directly access runtime state.
for key, value in event.node_run_result.outputs.items():
if key == "answer":
existing = self._graph_runtime_state.outputs.get("answer", "")
existing = self._graph_runtime_state.get_output("answer", "")
if existing:
self._graph_runtime_state.outputs["answer"] = f"{existing}{value}"
self._graph_runtime_state.set_output("answer", f"{existing}{value}")
else:
self._graph_runtime_state.outputs["answer"] = value
self._graph_runtime_state.set_output("answer", value)
else:
self._graph_runtime_state.outputs[key] = value
self._graph_runtime_state.set_output(key, value)

+ 4
- 4
api/core/workflow/nodes/loop/loop_node.py Wyświetl plik

@@ -147,14 +147,14 @@ class LoopNode(Node):
for key, value in graph_engine.graph_runtime_state.outputs.items():
if key == "answer":
# Concatenate answer outputs with newline
existing_answer = self.graph_runtime_state.outputs.get("answer", "")
existing_answer = self.graph_runtime_state.get_output("answer", "")
if existing_answer:
self.graph_runtime_state.outputs["answer"] = f"{existing_answer}{value}"
self.graph_runtime_state.set_output("answer", f"{existing_answer}{value}")
else:
self.graph_runtime_state.outputs["answer"] = value
self.graph_runtime_state.set_output("answer", value)
else:
# For other outputs, just update
self.graph_runtime_state.outputs[key] = value
self.graph_runtime_state.set_output(key, value)

# Update the total tokens from this iteration
cost_tokens += graph_engine.graph_runtime_state.total_tokens

+ 114
- 0
api/tests/unit_tests/core/workflow/entities/test_graph_runtime_state.py Wyświetl plik

@@ -0,0 +1,114 @@
from time import time

import pytest

from core.workflow.entities.graph_runtime_state import GraphRuntimeState
from core.workflow.entities.variable_pool import VariablePool


class TestGraphRuntimeState:
def test_property_getters_and_setters(self):
# FIXME(-LAN-): Mock VariablePool if needed
variable_pool = VariablePool()
start_time = time()

state = GraphRuntimeState(variable_pool=variable_pool, start_at=start_time)

# Test variable_pool property
assert state.variable_pool == variable_pool
new_pool = VariablePool()
state.variable_pool = new_pool
assert state.variable_pool == new_pool

# Test start_at property
assert state.start_at == start_time
new_time = time() + 100
state.start_at = new_time
assert state.start_at == new_time

# Test total_tokens property
assert state.total_tokens == 0
state.total_tokens = 100
assert state.total_tokens == 100

# Test node_run_steps property
assert state.node_run_steps == 0
state.node_run_steps = 5
assert state.node_run_steps == 5

def test_outputs_immutability(self):
variable_pool = VariablePool()
state = GraphRuntimeState(variable_pool=variable_pool, start_at=time())

# Test that getting outputs returns a copy
outputs1 = state.outputs
outputs2 = state.outputs
assert outputs1 == outputs2
assert outputs1 is not outputs2 # Different objects

# Test that modifying retrieved outputs doesn't affect internal state
outputs = state.outputs
outputs["test"] = "value"
assert "test" not in state.outputs

# Test set_output method
state.set_output("key1", "value1")
assert state.get_output("key1") == "value1"

# Test update_outputs method
state.update_outputs({"key2": "value2", "key3": "value3"})
assert state.get_output("key2") == "value2"
assert state.get_output("key3") == "value3"

def test_llm_usage_immutability(self):
variable_pool = VariablePool()
state = GraphRuntimeState(variable_pool=variable_pool, start_at=time())

# Test that getting llm_usage returns a copy
usage1 = state.llm_usage
usage2 = state.llm_usage
assert usage1 is not usage2 # Different objects

def test_type_validation(self):
variable_pool = VariablePool()
state = GraphRuntimeState(variable_pool=variable_pool, start_at=time())

# Test total_tokens validation
with pytest.raises(ValueError):
state.total_tokens = -1

# Test node_run_steps validation
with pytest.raises(ValueError):
state.node_run_steps = -1

def test_helper_methods(self):
variable_pool = VariablePool()
state = GraphRuntimeState(variable_pool=variable_pool, start_at=time())

# Test increment_node_run_steps
initial_steps = state.node_run_steps
state.increment_node_run_steps()
assert state.node_run_steps == initial_steps + 1

# Test add_tokens
initial_tokens = state.total_tokens
state.add_tokens(50)
assert state.total_tokens == initial_tokens + 50

# Test add_tokens validation
with pytest.raises(ValueError):
state.add_tokens(-1)

def test_deep_copy_for_nested_objects(self):
variable_pool = VariablePool()
state = GraphRuntimeState(variable_pool=variable_pool, start_at=time())

# Test deep copy for nested dict
nested_data = {"level1": {"level2": {"value": "test"}}}
state.set_output("nested", nested_data)

retrieved = state.get_output("nested")
retrieved["level1"]["level2"]["value"] = "modified"

# Original should remain unchanged
assert state.get_output("nested")["level1"]["level2"]["value"] == "test"

Ładowanie…
Anuluj
Zapisz