|
|
|
@@ -5,7 +5,8 @@ import uuid |
|
|
|
|
|
|
|
import click |
|
|
|
from celery import shared_task # type: ignore |
|
|
|
from sqlalchemy import func |
|
|
|
from sqlalchemy import func, select |
|
|
|
from sqlalchemy.orm import Session |
|
|
|
|
|
|
|
from core.model_manager import ModelManager |
|
|
|
from core.model_runtime.entities.model_entities import ModelType |
|
|
|
@@ -18,7 +19,12 @@ from services.vector_service import VectorService |
|
|
|
|
|
|
|
@shared_task(queue="dataset") |
|
|
|
def batch_create_segment_to_index_task( |
|
|
|
job_id: str, content: list, dataset_id: str, document_id: str, tenant_id: str, user_id: str |
|
|
|
job_id: str, |
|
|
|
content: list, |
|
|
|
dataset_id: str, |
|
|
|
document_id: str, |
|
|
|
tenant_id: str, |
|
|
|
user_id: str, |
|
|
|
): |
|
|
|
""" |
|
|
|
Async batch create segment to index |
|
|
|
@@ -37,71 +43,80 @@ def batch_create_segment_to_index_task( |
|
|
|
indexing_cache_key = "segment_batch_import_{}".format(job_id) |
|
|
|
|
|
|
|
try: |
|
|
|
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() |
|
|
|
if not dataset: |
|
|
|
raise ValueError("Dataset not exist.") |
|
|
|
with Session(db.engine) as session: |
|
|
|
dataset = session.get(Dataset, dataset_id) |
|
|
|
if not dataset: |
|
|
|
raise ValueError("Dataset not exist.") |
|
|
|
|
|
|
|
dataset_document = db.session.query(Document).filter(Document.id == document_id).first() |
|
|
|
if not dataset_document: |
|
|
|
raise ValueError("Document not exist.") |
|
|
|
dataset_document = session.get(Document, document_id) |
|
|
|
if not dataset_document: |
|
|
|
raise ValueError("Document not exist.") |
|
|
|
|
|
|
|
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed": |
|
|
|
raise ValueError("Document is not available.") |
|
|
|
document_segments = [] |
|
|
|
embedding_model = None |
|
|
|
if dataset.indexing_technique == "high_quality": |
|
|
|
model_manager = ModelManager() |
|
|
|
embedding_model = model_manager.get_model_instance( |
|
|
|
tenant_id=dataset.tenant_id, |
|
|
|
provider=dataset.embedding_model_provider, |
|
|
|
model_type=ModelType.TEXT_EMBEDDING, |
|
|
|
model=dataset.embedding_model, |
|
|
|
if ( |
|
|
|
not dataset_document.enabled |
|
|
|
or dataset_document.archived |
|
|
|
or dataset_document.indexing_status != "completed" |
|
|
|
): |
|
|
|
raise ValueError("Document is not available.") |
|
|
|
document_segments = [] |
|
|
|
embedding_model = None |
|
|
|
if dataset.indexing_technique == "high_quality": |
|
|
|
model_manager = ModelManager() |
|
|
|
embedding_model = model_manager.get_model_instance( |
|
|
|
tenant_id=dataset.tenant_id, |
|
|
|
provider=dataset.embedding_model_provider, |
|
|
|
model_type=ModelType.TEXT_EMBEDDING, |
|
|
|
model=dataset.embedding_model, |
|
|
|
) |
|
|
|
word_count_change = 0 |
|
|
|
segments_to_insert: list[str] = [] |
|
|
|
max_position_stmt = select(func.max(DocumentSegment.position)).where( |
|
|
|
DocumentSegment.document_id == dataset_document.id |
|
|
|
) |
|
|
|
word_count_change = 0 |
|
|
|
segments_to_insert: list[str] = [] # Explicitly type hint the list as List[str] |
|
|
|
for segment in content: |
|
|
|
content_str = segment["content"] |
|
|
|
doc_id = str(uuid.uuid4()) |
|
|
|
segment_hash = helper.generate_text_hash(content_str) |
|
|
|
# calc embedding use tokens |
|
|
|
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content_str]) if embedding_model else 0 |
|
|
|
max_position = ( |
|
|
|
db.session.query(func.max(DocumentSegment.position)) |
|
|
|
.filter(DocumentSegment.document_id == dataset_document.id) |
|
|
|
.scalar() |
|
|
|
) |
|
|
|
segment_document = DocumentSegment( |
|
|
|
tenant_id=tenant_id, |
|
|
|
dataset_id=dataset_id, |
|
|
|
document_id=document_id, |
|
|
|
index_node_id=doc_id, |
|
|
|
index_node_hash=segment_hash, |
|
|
|
position=max_position + 1 if max_position else 1, |
|
|
|
content=content_str, |
|
|
|
word_count=len(content_str), |
|
|
|
tokens=tokens, |
|
|
|
created_by=user_id, |
|
|
|
indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None), |
|
|
|
status="completed", |
|
|
|
completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None), |
|
|
|
) |
|
|
|
if dataset_document.doc_form == "qa_model": |
|
|
|
segment_document.answer = segment["answer"] |
|
|
|
segment_document.word_count += len(segment["answer"]) |
|
|
|
word_count_change += segment_document.word_count |
|
|
|
db.session.add(segment_document) |
|
|
|
document_segments.append(segment_document) |
|
|
|
segments_to_insert.append(str(segment)) # Cast to string if needed |
|
|
|
# update document word count |
|
|
|
dataset_document.word_count += word_count_change |
|
|
|
db.session.add(dataset_document) |
|
|
|
# add index to db |
|
|
|
VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form) |
|
|
|
db.session.commit() |
|
|
|
max_position = session.scalar(max_position_stmt) or 1 |
|
|
|
for segment in content: |
|
|
|
content_str = segment["content"] |
|
|
|
doc_id = str(uuid.uuid4()) |
|
|
|
segment_hash = helper.generate_text_hash(content_str) |
|
|
|
# calc embedding use tokens |
|
|
|
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content_str]) if embedding_model else 0 |
|
|
|
segment_document = DocumentSegment( |
|
|
|
tenant_id=tenant_id, |
|
|
|
dataset_id=dataset_id, |
|
|
|
document_id=document_id, |
|
|
|
index_node_id=doc_id, |
|
|
|
index_node_hash=segment_hash, |
|
|
|
position=max_position, |
|
|
|
content=content_str, |
|
|
|
word_count=len(content_str), |
|
|
|
tokens=tokens, |
|
|
|
created_by=user_id, |
|
|
|
indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None), |
|
|
|
status="completed", |
|
|
|
completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None), |
|
|
|
) |
|
|
|
max_position += 1 |
|
|
|
if dataset_document.doc_form == "qa_model": |
|
|
|
segment_document.answer = segment["answer"] |
|
|
|
segment_document.word_count += len(segment["answer"]) |
|
|
|
word_count_change += segment_document.word_count |
|
|
|
session.add(segment_document) |
|
|
|
document_segments.append(segment_document) |
|
|
|
segments_to_insert.append(str(segment)) # Cast to string if needed |
|
|
|
# update document word count |
|
|
|
dataset_document.word_count += word_count_change |
|
|
|
session.add(dataset_document) |
|
|
|
# add index to db |
|
|
|
VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form) |
|
|
|
session.commit() |
|
|
|
|
|
|
|
redis_client.setex(indexing_cache_key, 600, "completed") |
|
|
|
end_at = time.perf_counter() |
|
|
|
logging.info( |
|
|
|
click.style("Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), fg="green") |
|
|
|
click.style( |
|
|
|
"Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), |
|
|
|
fg="green", |
|
|
|
) |
|
|
|
) |
|
|
|
except Exception as e: |
|
|
|
logging.exception("Segments batch created index failed") |