| @@ -0,0 +1,95 @@ | |||
| model: Qwen2.5-72B-Instruct | |||
| label: | |||
| zh_Hans: Qwen2.5-72B-Instruct | |||
| en_US: Qwen2.5-72B-Instruct | |||
| model_type: llm | |||
| features: | |||
| - agent-thought | |||
| - tool-call | |||
| - stream-tool-call | |||
| model_properties: | |||
| mode: chat | |||
| context_size: 32768 | |||
| parameter_rules: | |||
| - name: max_tokens | |||
| use_template: max_tokens | |||
| label: | |||
| en_US: "Max Tokens" | |||
| zh_Hans: "最大Token数" | |||
| type: int | |||
| default: 512 | |||
| min: 1 | |||
| required: true | |||
| help: | |||
| en_US: "The maximum number of tokens that can be generated by the model varies depending on the model." | |||
| zh_Hans: "模型可生成的最大 token 个数,不同模型上限不同。" | |||
| - name: temperature | |||
| use_template: temperature | |||
| label: | |||
| en_US: "Temperature" | |||
| zh_Hans: "采样温度" | |||
| type: float | |||
| default: 0.7 | |||
| min: 0.0 | |||
| max: 1.0 | |||
| precision: 1 | |||
| required: true | |||
| help: | |||
| en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time." | |||
| zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。" | |||
| - name: top_p | |||
| use_template: top_p | |||
| label: | |||
| en_US: "Top P" | |||
| zh_Hans: "Top P" | |||
| type: float | |||
| default: 0.7 | |||
| min: 0.0 | |||
| max: 1.0 | |||
| precision: 1 | |||
| required: true | |||
| help: | |||
| en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time." | |||
| zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens;当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。" | |||
| - name: top_k | |||
| use_template: top_k | |||
| label: | |||
| en_US: "Top K" | |||
| zh_Hans: "Top K" | |||
| type: int | |||
| default: 50 | |||
| min: 0 | |||
| max: 100 | |||
| required: true | |||
| help: | |||
| en_US: "The value range is [0,100], which limits the model to only select from the top k words with the highest probability when choosing the next word at each step. The larger the value, the more diverse text generation will be." | |||
| zh_Hans: "取值范围为 [0,100],限制模型在每一步选择下一个词时,只从概率最高的前 k 个词中选取。数值越大,文本生成越多样。" | |||
| - name: frequency_penalty | |||
| use_template: frequency_penalty | |||
| label: | |||
| en_US: "Frequency Penalty" | |||
| zh_Hans: "频率惩罚" | |||
| type: float | |||
| default: 0 | |||
| min: -1.0 | |||
| max: 1.0 | |||
| precision: 1 | |||
| required: false | |||
| help: | |||
| en_US: "Used to adjust the frequency of repeated content in automatically generated text. Positive numbers reduce repetition, while negative numbers increase repetition. After setting this parameter, if a word has already appeared in the text, the model will decrease the probability of choosing that word for subsequent generation." | |||
| zh_Hans: "用于调整自动生成文本中重复内容的频率。正数减少重复,负数增加重复。设置此参数后,如果一个词在文本中已经出现过,模型在后续生成中选择该词的概率会降低。" | |||
| - name: user | |||
| use_template: text | |||
| label: | |||
| en_US: "User" | |||
| zh_Hans: "用户" | |||
| type: string | |||
| required: false | |||
| help: | |||
| en_US: "Used to track and differentiate conversation requests from different users." | |||
| zh_Hans: "用于追踪和区分不同用户的对话请求。" | |||
| @@ -1,3 +1,4 @@ | |||
| - Qwen2.5-72B-Instruct | |||
| - Qwen2-7B-Instruct | |||
| - Qwen2-72B-Instruct | |||
| - Yi-1.5-34B-Chat | |||
| @@ -6,6 +6,7 @@ from core.model_runtime.entities.message_entities import ( | |||
| PromptMessage, | |||
| PromptMessageTool, | |||
| ) | |||
| from core.model_runtime.entities.model_entities import ModelFeature | |||
| from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAIAPICompatLargeLanguageModel | |||
| @@ -28,14 +29,13 @@ class GiteeAILargeLanguageModel(OAIAPICompatLargeLanguageModel): | |||
| user: Optional[str] = None, | |||
| ) -> Union[LLMResult, Generator]: | |||
| self._add_custom_parameters(credentials, model, model_parameters) | |||
| return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream) | |||
| return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user) | |||
| def validate_credentials(self, model: str, credentials: dict) -> None: | |||
| self._add_custom_parameters(credentials, model, None) | |||
| super().validate_credentials(model, credentials) | |||
| @staticmethod | |||
| def _add_custom_parameters(credentials: dict, model: str, model_parameters: dict) -> None: | |||
| def _add_custom_parameters(self, credentials: dict, model: str, model_parameters: dict) -> None: | |||
| if model is None: | |||
| model = "bge-large-zh-v1.5" | |||
| @@ -45,3 +45,7 @@ class GiteeAILargeLanguageModel(OAIAPICompatLargeLanguageModel): | |||
| credentials["mode"] = LLMMode.COMPLETION.value | |||
| else: | |||
| credentials["mode"] = LLMMode.CHAT.value | |||
| schema = self.get_model_schema(model, credentials) | |||
| if ModelFeature.TOOL_CALL in schema.features or ModelFeature.MULTI_TOOL_CALL in schema.features: | |||
| credentials["function_calling_type"] = "tool_call" | |||