| @@ -58,7 +58,7 @@ jobs: | |||
| - name: Run Workflow | |||
| run: dev/pytest/pytest_workflow.sh | |||
| - name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS) | |||
| - name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma) | |||
| uses: hoverkraft-tech/compose-action@v2.0.0 | |||
| with: | |||
| compose-file: | | |||
| @@ -67,6 +67,7 @@ jobs: | |||
| docker/docker-compose.milvus.yaml | |||
| docker/docker-compose.pgvecto-rs.yaml | |||
| docker/docker-compose.pgvector.yaml | |||
| docker/docker-compose.chroma.yaml | |||
| services: | | |||
| weaviate | |||
| qdrant | |||
| @@ -75,6 +76,7 @@ jobs: | |||
| milvus-standalone | |||
| pgvecto-rs | |||
| pgvector | |||
| chroma | |||
| - name: Test Vector Stores | |||
| run: dev/pytest/pytest_vdb.sh | |||
| @@ -131,7 +133,7 @@ jobs: | |||
| - name: Run Workflow | |||
| run: poetry run -C api bash dev/pytest/pytest_workflow.sh | |||
| - name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS) | |||
| - name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma) | |||
| uses: hoverkraft-tech/compose-action@v2.0.0 | |||
| with: | |||
| compose-file: | | |||
| @@ -140,6 +142,7 @@ jobs: | |||
| docker/docker-compose.milvus.yaml | |||
| docker/docker-compose.pgvecto-rs.yaml | |||
| docker/docker-compose.pgvector.yaml | |||
| docker/docker-compose.chroma.yaml | |||
| services: | | |||
| weaviate | |||
| qdrant | |||
| @@ -148,6 +151,7 @@ jobs: | |||
| milvus-standalone | |||
| pgvecto-rs | |||
| pgvector | |||
| chroma | |||
| - name: Test Vector Stores | |||
| run: poetry run -C api bash dev/pytest/pytest_vdb.sh | |||
| @@ -149,6 +149,7 @@ docker/volumes/qdrant/* | |||
| docker/volumes/etcd/* | |||
| docker/volumes/minio/* | |||
| docker/volumes/milvus/* | |||
| docker/volumes/chroma/* | |||
| sdks/python-client/build | |||
| sdks/python-client/dist | |||
| @@ -119,6 +119,14 @@ TIDB_VECTOR_USER=xxx.root | |||
| TIDB_VECTOR_PASSWORD=xxxxxx | |||
| TIDB_VECTOR_DATABASE=dify | |||
| # Chroma configuration | |||
| CHROMA_HOST=127.0.0.1 | |||
| CHROMA_PORT=8000 | |||
| CHROMA_TENANT=default_tenant | |||
| CHROMA_DATABASE=default_database | |||
| CHROMA_AUTH_PROVIDER=chromadb.auth.token_authn.TokenAuthenticationServerProvider | |||
| CHROMA_AUTH_CREDENTIALS=difyai123456 | |||
| # Upload configuration | |||
| UPLOAD_FILE_SIZE_LIMIT=15 | |||
| UPLOAD_FILE_BATCH_LIMIT=5 | |||
| @@ -306,6 +306,14 @@ class Config: | |||
| self.TIDB_VECTOR_PASSWORD = get_env('TIDB_VECTOR_PASSWORD') | |||
| self.TIDB_VECTOR_DATABASE = get_env('TIDB_VECTOR_DATABASE') | |||
| # chroma settings | |||
| self.CHROMA_HOST = get_env('CHROMA_HOST') | |||
| self.CHROMA_PORT = get_env('CHROMA_PORT') | |||
| self.CHROMA_TENANT = get_env('CHROMA_TENANT') | |||
| self.CHROMA_DATABASE = get_env('CHROMA_DATABASE') | |||
| self.CHROMA_AUTH_PROVIDER = get_env('CHROMA_AUTH_PROVIDER') | |||
| self.CHROMA_AUTH_CREDENTIALS = get_env('CHROMA_AUTH_CREDENTIALS') | |||
| # ------------------------ | |||
| # Mail Configurations. | |||
| # ------------------------ | |||
| @@ -479,7 +479,7 @@ class DatasetRetrievalSettingApi(Resource): | |||
| vector_type = current_app.config['VECTOR_STORE'] | |||
| match vector_type: | |||
| case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR: | |||
| case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA: | |||
| return { | |||
| 'retrieval_method': [ | |||
| 'semantic_search' | |||
| @@ -501,7 +501,7 @@ class DatasetRetrievalSettingMockApi(Resource): | |||
| @account_initialization_required | |||
| def get(self, vector_type): | |||
| match vector_type: | |||
| case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR: | |||
| case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA: | |||
| return { | |||
| 'retrieval_method': [ | |||
| 'semantic_search' | |||
| @@ -0,0 +1,147 @@ | |||
| import json | |||
| from typing import Any, Optional | |||
| import chromadb | |||
| from chromadb import QueryResult, Settings | |||
| from flask import current_app | |||
| from pydantic import BaseModel | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| from core.rag.datasource.vdb.vector_type import VectorType | |||
| from core.rag.models.document import Document | |||
| from extensions.ext_redis import redis_client | |||
| from models.dataset import Dataset | |||
| class ChromaConfig(BaseModel): | |||
| host: str | |||
| port: int | |||
| tenant: str | |||
| database: str | |||
| auth_provider: Optional[str] = None | |||
| auth_credentials: Optional[str] = None | |||
| def to_chroma_params(self): | |||
| settings = Settings( | |||
| # auth | |||
| chroma_client_auth_provider=self.auth_provider, | |||
| chroma_client_auth_credentials=self.auth_credentials | |||
| ) | |||
| return { | |||
| 'host': self.host, | |||
| 'port': self.port, | |||
| 'ssl': False, | |||
| 'tenant': self.tenant, | |||
| 'database': self.database, | |||
| 'settings': settings, | |||
| } | |||
| class ChromaVector(BaseVector): | |||
| def __init__(self, collection_name: str, config: ChromaConfig): | |||
| super().__init__(collection_name) | |||
| self._client_config = config | |||
| self._client = chromadb.HttpClient(**self._client_config.to_chroma_params()) | |||
| def get_type(self) -> str: | |||
| return VectorType.CHROMA | |||
| def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs): | |||
| if texts: | |||
| # create collection | |||
| self.create_collection(self._collection_name) | |||
| self.add_texts(texts, embeddings, **kwargs) | |||
| def create_collection(self, collection_name: str): | |||
| lock_name = 'vector_indexing_lock_{}'.format(collection_name) | |||
| with redis_client.lock(lock_name, timeout=20): | |||
| collection_exist_cache_key = 'vector_indexing_{}'.format(self._collection_name) | |||
| if redis_client.get(collection_exist_cache_key): | |||
| return | |||
| self._client.get_or_create_collection(collection_name) | |||
| redis_client.set(collection_exist_cache_key, 1, ex=3600) | |||
| def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs): | |||
| uuids = self._get_uuids(documents) | |||
| texts = [d.page_content for d in documents] | |||
| metadatas = [d.metadata for d in documents] | |||
| collection = self._client.get_or_create_collection(self._collection_name) | |||
| collection.upsert(ids=uuids, documents=texts, embeddings=embeddings, metadatas=metadatas) | |||
| def delete_by_metadata_field(self, key: str, value: str): | |||
| collection = self._client.get_or_create_collection(self._collection_name) | |||
| collection.delete(where={key: {'$eq': value}}) | |||
| def delete(self): | |||
| self._client.delete_collection(self._collection_name) | |||
| def delete_by_ids(self, ids: list[str]) -> None: | |||
| collection = self._client.get_or_create_collection(self._collection_name) | |||
| collection.delete(ids=ids) | |||
| def text_exists(self, id: str) -> bool: | |||
| collection = self._client.get_or_create_collection(self._collection_name) | |||
| response = collection.get(ids=[id]) | |||
| return len(response) > 0 | |||
| def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]: | |||
| collection = self._client.get_or_create_collection(self._collection_name) | |||
| results: QueryResult = collection.query(query_embeddings=query_vector, n_results=kwargs.get("top_k", 4)) | |||
| score_threshold = kwargs.get("score_threshold", .0) if kwargs.get('score_threshold', .0) else 0.0 | |||
| ids: list[str] = results['ids'][0] | |||
| documents: list[str] = results['documents'][0] | |||
| metadatas: dict[str, Any] = results['metadatas'][0] | |||
| distances: list[float] = results['distances'][0] | |||
| docs = [] | |||
| for index in range(len(ids)): | |||
| distance = distances[index] | |||
| metadata = metadatas[index] | |||
| if distance >= score_threshold: | |||
| metadata['score'] = distance | |||
| doc = Document( | |||
| page_content=documents[index], | |||
| metadata=metadata, | |||
| ) | |||
| docs.append(doc) | |||
| return docs | |||
| def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]: | |||
| # chroma does not support BM25 full text searching | |||
| return [] | |||
| class ChromaVectorFactory(AbstractVectorFactory): | |||
| def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> BaseVector: | |||
| if dataset.index_struct_dict: | |||
| class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix.lower() | |||
| else: | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower() | |||
| index_struct_dict = { | |||
| "type": VectorType.CHROMA, | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| dataset.index_struct = json.dumps(index_struct_dict) | |||
| config = current_app.config | |||
| return ChromaVector( | |||
| collection_name=collection_name, | |||
| config=ChromaConfig( | |||
| host=config.get('CHROMA_HOST'), | |||
| port=int(config.get('CHROMA_PORT')), | |||
| tenant=config.get('CHROMA_TENANT', chromadb.DEFAULT_TENANT), | |||
| database=config.get('CHROMA_DATABASE', chromadb.DEFAULT_DATABASE), | |||
| auth_provider=config.get('CHROMA_AUTH_PROVIDER'), | |||
| auth_credentials=config.get('CHROMA_AUTH_CREDENTIALS'), | |||
| ), | |||
| ) | |||
| @@ -52,6 +52,9 @@ class Vector: | |||
| @staticmethod | |||
| def get_vector_factory(vector_type: str) -> type[AbstractVectorFactory]: | |||
| match vector_type: | |||
| case VectorType.CHROMA: | |||
| from core.rag.datasource.vdb.chroma.chroma_vector import ChromaVectorFactory | |||
| return ChromaVectorFactory | |||
| case VectorType.MILVUS: | |||
| from core.rag.datasource.vdb.milvus.milvus_vector import MilvusVectorFactory | |||
| return MilvusVectorFactory | |||
| @@ -2,6 +2,7 @@ from enum import Enum | |||
| class VectorType(str, Enum): | |||
| CHROMA = 'chroma' | |||
| MILVUS = 'milvus' | |||
| PGVECTOR = 'pgvector' | |||
| PGVECTO_RS = 'pgvecto-rs' | |||
| @@ -107,7 +107,6 @@ pycryptodome = "3.19.1" | |||
| python-dotenv = "1.0.0" | |||
| authlib = "1.2.0" | |||
| boto3 = "1.28.17" | |||
| tenacity = "8.2.2" | |||
| cachetools = "~5.3.0" | |||
| weaviate-client = "~3.21.0" | |||
| mailchimp-transactional = "~1.0.50" | |||
| @@ -179,6 +178,7 @@ google-cloud-aiplatform = "1.49.0" | |||
| vanna = {version = "0.5.5", extras = ["postgres", "mysql", "clickhouse", "duckdb"]} | |||
| kaleido = "0.2.1" | |||
| tencentcloud-sdk-python-hunyuan = "~3.0.1158" | |||
| chromadb = "~0.5.0" | |||
| [tool.poetry.group.dev] | |||
| optional = true | |||
| @@ -16,7 +16,6 @@ pycryptodome==3.19.1 | |||
| python-dotenv==1.0.0 | |||
| Authlib==1.2.0 | |||
| boto3==1.34.123 | |||
| tenacity==8.2.2 | |||
| cachetools~=5.3.0 | |||
| weaviate-client~=3.21.0 | |||
| mailchimp-transactional~=1.0.50 | |||
| @@ -85,4 +84,5 @@ pymysql==1.1.1 | |||
| tidb-vector==0.0.9 | |||
| google-cloud-aiplatform==1.49.0 | |||
| vanna[postgres,mysql,clickhouse,duckdb]==0.5.5 | |||
| tencentcloud-sdk-python-hunyuan~=3.0.1158 | |||
| tencentcloud-sdk-python-hunyuan~=3.0.1158 | |||
| chromadb~=0.5.0 | |||
| @@ -0,0 +1,33 @@ | |||
| import chromadb | |||
| from core.rag.datasource.vdb.chroma.chroma_vector import ChromaConfig, ChromaVector | |||
| from tests.integration_tests.vdb.test_vector_store import ( | |||
| AbstractVectorTest, | |||
| get_example_text, | |||
| setup_mock_redis, | |||
| ) | |||
| class ChromaVectorTest(AbstractVectorTest): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.vector = ChromaVector( | |||
| collection_name=self.collection_name, | |||
| config=ChromaConfig( | |||
| host='localhost', | |||
| port=8000, | |||
| tenant=chromadb.DEFAULT_TENANT, | |||
| database=chromadb.DEFAULT_DATABASE, | |||
| auth_provider="chromadb.auth.token_authn.TokenAuthClientProvider", | |||
| auth_credentials="difyai123456", | |||
| ) | |||
| ) | |||
| def search_by_full_text(self): | |||
| # chroma dos not support full text searching | |||
| hits_by_full_text = self.vector.search_by_full_text(query=get_example_text()) | |||
| assert len(hits_by_full_text) == 0 | |||
| def test_chroma_vector(setup_mock_redis): | |||
| ChromaVectorTest().run_all_tests() | |||
| @@ -0,0 +1,14 @@ | |||
| version: '3' | |||
| services: | |||
| # Chroma vector store. | |||
| chroma: | |||
| image: ghcr.io/chroma-core/chroma:0.5.0 | |||
| restart: always | |||
| volumes: | |||
| - ./volumes/chroma:/chroma/chroma | |||
| environment: | |||
| CHROMA_SERVER_AUTHN_CREDENTIALS: difyai123456 | |||
| CHROMA_SERVER_AUTHN_PROVIDER: chromadb.auth.token_authn.TokenAuthenticationServerProvider | |||
| IS_PERSISTENT: TRUE | |||
| ports: | |||
| - "8000:8000" | |||
| @@ -140,6 +140,13 @@ services: | |||
| TIDB_VECTOR_USER: xxx.root | |||
| TIDB_VECTOR_PASSWORD: xxxxxx | |||
| TIDB_VECTOR_DATABASE: dify | |||
| # Chroma configuration | |||
| CHROMA_HOST: 127.0.0.1 | |||
| CHROMA_PORT: 8000 | |||
| CHROMA_TENANT: default_tenant | |||
| CHROMA_DATABASE: default_database | |||
| CHROMA_AUTH_PROVIDER: chromadb.auth.token_authn.TokenAuthClientProvider | |||
| CHROMA_AUTH_CREDENTIALS: xxxxxx | |||
| # Mail configuration, support: resend, smtp | |||
| MAIL_TYPE: '' | |||
| # default send from email address, if not specified | |||
| @@ -301,6 +308,13 @@ services: | |||
| TIDB_VECTOR_USER: xxx.root | |||
| TIDB_VECTOR_PASSWORD: xxxxxx | |||
| TIDB_VECTOR_DATABASE: dify | |||
| # Chroma configuration | |||
| CHROMA_HOST: 127.0.0.1 | |||
| CHROMA_PORT: 8000 | |||
| CHROMA_TENANT: default_tenant | |||
| CHROMA_DATABASE: default_database | |||
| CHROMA_AUTH_PROVIDER: chromadb.auth.token_authn.TokenAuthClientProvider | |||
| CHROMA_AUTH_CREDENTIALS: xxxxxx | |||
| # Notion import configuration, support public and internal | |||
| NOTION_INTEGRATION_TYPE: public | |||
| NOTION_CLIENT_SECRET: you-client-secret | |||