Co-authored-by: -LAN- <laipz8200@outlook.com>tags/0.6.15
| @@ -7,8 +7,8 @@ _import_err_msg = ( | |||
| "`alibabacloud_gpdb20160503` and `alibabacloud_tea_openapi` packages not found, " | |||
| "please run `pip install alibabacloud_gpdb20160503 alibabacloud_tea_openapi`" | |||
| ) | |||
| from flask import current_app | |||
| from configs import dify_config | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| @@ -36,7 +36,7 @@ class AnalyticdbConfig(BaseModel): | |||
| "region_id": self.region_id, | |||
| "read_timeout": self.read_timeout, | |||
| } | |||
| class AnalyticdbVector(BaseVector): | |||
| _instance = None | |||
| _init = False | |||
| @@ -45,7 +45,7 @@ class AnalyticdbVector(BaseVector): | |||
| if cls._instance is None: | |||
| cls._instance = super().__new__(cls) | |||
| return cls._instance | |||
| def __init__(self, collection_name: str, config: AnalyticdbConfig): | |||
| # collection_name must be updated every time | |||
| self._collection_name = collection_name.lower() | |||
| @@ -105,7 +105,7 @@ class AnalyticdbVector(BaseVector): | |||
| raise ValueError( | |||
| f"failed to create namespace {self.config.namespace}: {e}" | |||
| ) | |||
| def _create_collection_if_not_exists(self, embedding_dimension: int): | |||
| from alibabacloud_gpdb20160503 import models as gpdb_20160503_models | |||
| from Tea.exceptions import TeaException | |||
| @@ -149,7 +149,7 @@ class AnalyticdbVector(BaseVector): | |||
| def get_type(self) -> str: | |||
| return VectorType.ANALYTICDB | |||
| def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs): | |||
| dimension = len(embeddings[0]) | |||
| self._create_collection_if_not_exists(dimension) | |||
| @@ -199,7 +199,7 @@ class AnalyticdbVector(BaseVector): | |||
| ) | |||
| response = self._client.query_collection_data(request) | |||
| return len(response.body.matches.match) > 0 | |||
| def delete_by_ids(self, ids: list[str]) -> None: | |||
| from alibabacloud_gpdb20160503 import models as gpdb_20160503_models | |||
| ids_str = ",".join(f"'{id}'" for id in ids) | |||
| @@ -260,7 +260,7 @@ class AnalyticdbVector(BaseVector): | |||
| ) | |||
| documents.append(doc) | |||
| return documents | |||
| def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]: | |||
| from alibabacloud_gpdb20160503 import models as gpdb_20160503_models | |||
| score_threshold = ( | |||
| @@ -291,7 +291,7 @@ class AnalyticdbVector(BaseVector): | |||
| ) | |||
| documents.append(doc) | |||
| return documents | |||
| def delete(self) -> None: | |||
| from alibabacloud_gpdb20160503 import models as gpdb_20160503_models | |||
| request = gpdb_20160503_models.DeleteCollectionRequest( | |||
| @@ -316,17 +316,18 @@ class AnalyticdbVectorFactory(AbstractVectorFactory): | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.ANALYTICDB, collection_name) | |||
| ) | |||
| config = current_app.config | |||
| # TODO handle optional params | |||
| return AnalyticdbVector( | |||
| collection_name, | |||
| AnalyticdbConfig( | |||
| access_key_id=config.get("ANALYTICDB_KEY_ID"), | |||
| access_key_secret=config.get("ANALYTICDB_KEY_SECRET"), | |||
| region_id=config.get("ANALYTICDB_REGION_ID"), | |||
| instance_id=config.get("ANALYTICDB_INSTANCE_ID"), | |||
| account=config.get("ANALYTICDB_ACCOUNT"), | |||
| account_password=config.get("ANALYTICDB_PASSWORD"), | |||
| namespace=config.get("ANALYTICDB_NAMESPACE"), | |||
| namespace_password=config.get("ANALYTICDB_NAMESPACE_PASSWORD"), | |||
| access_key_id=dify_config.ANALYTICDB_KEY_ID, | |||
| access_key_secret=dify_config.ANALYTICDB_KEY_SECRET, | |||
| region_id=dify_config.ANALYTICDB_REGION_ID, | |||
| instance_id=dify_config.ANALYTICDB_INSTANCE_ID, | |||
| account=dify_config.ANALYTICDB_ACCOUNT, | |||
| account_password=dify_config.ANALYTICDB_PASSWORD, | |||
| namespace=dify_config.ANALYTICDB_NAMESPACE, | |||
| namespace_password=dify_config.ANALYTICDB_NAMESPACE_PASSWORD, | |||
| ), | |||
| ) | |||
| ) | |||
| @@ -3,9 +3,9 @@ from typing import Any, Optional | |||
| import chromadb | |||
| from chromadb import QueryResult, Settings | |||
| from flask import current_app | |||
| from pydantic import BaseModel | |||
| from configs import dify_config | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| @@ -133,15 +133,14 @@ class ChromaVectorFactory(AbstractVectorFactory): | |||
| } | |||
| dataset.index_struct = json.dumps(index_struct_dict) | |||
| config = current_app.config | |||
| return ChromaVector( | |||
| collection_name=collection_name, | |||
| config=ChromaConfig( | |||
| host=config.get('CHROMA_HOST'), | |||
| port=int(config.get('CHROMA_PORT')), | |||
| tenant=config.get('CHROMA_TENANT', chromadb.DEFAULT_TENANT), | |||
| database=config.get('CHROMA_DATABASE', chromadb.DEFAULT_DATABASE), | |||
| auth_provider=config.get('CHROMA_AUTH_PROVIDER'), | |||
| auth_credentials=config.get('CHROMA_AUTH_CREDENTIALS'), | |||
| host=dify_config.CHROMA_HOST, | |||
| port=dify_config.CHROMA_PORT, | |||
| tenant=dify_config.CHROMA_TENANT or chromadb.DEFAULT_TENANT, | |||
| database=dify_config.CHROMA_DATABASE or chromadb.DEFAULT_DATABASE, | |||
| auth_provider=dify_config.CHROMA_AUTH_PROVIDER, | |||
| auth_credentials=dify_config.CHROMA_AUTH_CREDENTIALS, | |||
| ), | |||
| ) | |||
| @@ -3,10 +3,10 @@ import logging | |||
| from typing import Any, Optional | |||
| from uuid import uuid4 | |||
| from flask import current_app | |||
| from pydantic import BaseModel, model_validator | |||
| from pymilvus import MilvusClient, MilvusException, connections | |||
| from configs import dify_config | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.field import Field | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| @@ -275,15 +275,14 @@ class MilvusVectorFactory(AbstractVectorFactory): | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.MILVUS, collection_name)) | |||
| config = current_app.config | |||
| return MilvusVector( | |||
| collection_name=collection_name, | |||
| config=MilvusConfig( | |||
| host=config.get('MILVUS_HOST'), | |||
| port=config.get('MILVUS_PORT'), | |||
| user=config.get('MILVUS_USER'), | |||
| password=config.get('MILVUS_PASSWORD'), | |||
| secure=config.get('MILVUS_SECURE'), | |||
| database=config.get('MILVUS_DATABASE'), | |||
| host=dify_config.MILVUS_HOST, | |||
| port=dify_config.MILVUS_PORT, | |||
| user=dify_config.MILVUS_USER, | |||
| password=dify_config.MILVUS_PASSWORD, | |||
| secure=dify_config.MILVUS_SECURE, | |||
| database=dify_config.MILVUS_DATABASE, | |||
| ) | |||
| ) | |||
| @@ -5,9 +5,9 @@ from enum import Enum | |||
| from typing import Any | |||
| from clickhouse_connect import get_client | |||
| from flask import current_app | |||
| from pydantic import BaseModel | |||
| from configs import dify_config | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| @@ -156,15 +156,15 @@ class MyScaleVectorFactory(AbstractVectorFactory): | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.MYSCALE, collection_name)) | |||
| config = current_app.config | |||
| return MyScaleVector( | |||
| collection_name=collection_name, | |||
| config=MyScaleConfig( | |||
| host=config.get("MYSCALE_HOST", "localhost"), | |||
| port=int(config.get("MYSCALE_PORT", 8123)), | |||
| user=config.get("MYSCALE_USER", "default"), | |||
| password=config.get("MYSCALE_PASSWORD", ""), | |||
| database=config.get("MYSCALE_DATABASE", "default"), | |||
| fts_params=config.get("MYSCALE_FTS_PARAMS", ""), | |||
| # TODO: I think setting those values as the default config would be a better option. | |||
| host=dify_config.MYSCALE_HOST or "localhost", | |||
| port=dify_config.MYSCALE_PORT or 8123, | |||
| user=dify_config.MYSCALE_USER or "default", | |||
| password=dify_config.MYSCALE_PASSWORD or "", | |||
| database=dify_config.MYSCALE_DATABASE or "default", | |||
| fts_params=dify_config.MYSCALE_FTS_PARAMS or "", | |||
| ), | |||
| ) | |||
| @@ -4,11 +4,11 @@ import ssl | |||
| from typing import Any, Optional | |||
| from uuid import uuid4 | |||
| from flask import current_app | |||
| from opensearchpy import OpenSearch, helpers | |||
| from opensearchpy.helpers import BulkIndexError | |||
| from pydantic import BaseModel, model_validator | |||
| from configs import dify_config | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.field import Field | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| @@ -257,14 +257,13 @@ class OpenSearchVectorFactory(AbstractVectorFactory): | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.OPENSEARCH, collection_name)) | |||
| config = current_app.config | |||
| open_search_config = OpenSearchConfig( | |||
| host=config.get('OPENSEARCH_HOST'), | |||
| port=config.get('OPENSEARCH_PORT'), | |||
| user=config.get('OPENSEARCH_USER'), | |||
| password=config.get('OPENSEARCH_PASSWORD'), | |||
| secure=config.get('OPENSEARCH_SECURE'), | |||
| host=dify_config.OPENSEARCH_HOST, | |||
| port=dify_config.OPENSEARCH_PORT, | |||
| user=dify_config.OPENSEARCH_USER, | |||
| password=dify_config.OPENSEARCH_PASSWORD, | |||
| secure=dify_config.OPENSEARCH_SECURE, | |||
| ) | |||
| return OpenSearchVector( | |||
| @@ -6,9 +6,9 @@ from typing import Any | |||
| import numpy | |||
| import oracledb | |||
| from flask import current_app | |||
| from pydantic import BaseModel, model_validator | |||
| from configs import dify_config | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| @@ -44,11 +44,11 @@ class OracleVectorConfig(BaseModel): | |||
| SQL_CREATE_TABLE = """ | |||
| CREATE TABLE IF NOT EXISTS {table_name} ( | |||
| id varchar2(100) | |||
| id varchar2(100) | |||
| ,text CLOB NOT NULL | |||
| ,meta JSON | |||
| ,embedding vector NOT NULL | |||
| ) | |||
| ) | |||
| """ | |||
| @@ -219,14 +219,13 @@ class OracleVectorFactory(AbstractVectorFactory): | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.ORACLE, collection_name)) | |||
| config = current_app.config | |||
| return OracleVector( | |||
| collection_name=collection_name, | |||
| config=OracleVectorConfig( | |||
| host=config.get("ORACLE_HOST"), | |||
| port=config.get("ORACLE_PORT"), | |||
| user=config.get("ORACLE_USER"), | |||
| password=config.get("ORACLE_PASSWORD"), | |||
| database=config.get("ORACLE_DATABASE"), | |||
| host=dify_config.ORACLE_HOST, | |||
| port=dify_config.ORACLE_PORT, | |||
| user=dify_config.ORACLE_USER, | |||
| password=dify_config.ORACLE_PASSWORD, | |||
| database=dify_config.ORACLE_DATABASE, | |||
| ), | |||
| ) | |||
| @@ -3,7 +3,6 @@ import logging | |||
| from typing import Any | |||
| from uuid import UUID, uuid4 | |||
| from flask import current_app | |||
| from numpy import ndarray | |||
| from pgvecto_rs.sqlalchemy import Vector | |||
| from pydantic import BaseModel, model_validator | |||
| @@ -12,6 +11,7 @@ from sqlalchemy import text as sql_text | |||
| from sqlalchemy.dialects import postgresql | |||
| from sqlalchemy.orm import Mapped, Session, mapped_column | |||
| from configs import dify_config | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.pgvecto_rs.collection import CollectionORM | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| @@ -93,7 +93,7 @@ class PGVectoRS(BaseVector): | |||
| text TEXT NOT NULL, | |||
| meta JSONB NOT NULL, | |||
| vector vector({dimension}) NOT NULL | |||
| ) using heap; | |||
| ) using heap; | |||
| """) | |||
| session.execute(create_statement) | |||
| index_statement = sql_text(f""" | |||
| @@ -233,15 +233,15 @@ class PGVectoRSFactory(AbstractVectorFactory): | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.WEAVIATE, collection_name)) | |||
| dim = len(embeddings.embed_query("pgvecto_rs")) | |||
| config = current_app.config | |||
| return PGVectoRS( | |||
| collection_name=collection_name, | |||
| config=PgvectoRSConfig( | |||
| host=config.get('PGVECTO_RS_HOST'), | |||
| port=config.get('PGVECTO_RS_PORT'), | |||
| user=config.get('PGVECTO_RS_USER'), | |||
| password=config.get('PGVECTO_RS_PASSWORD'), | |||
| database=config.get('PGVECTO_RS_DATABASE'), | |||
| host=dify_config.PGVECTO_RS_HOST, | |||
| port=dify_config.PGVECTO_RS_PORT, | |||
| user=dify_config.PGVECTO_RS_USER, | |||
| password=dify_config.PGVECTO_RS_PASSWORD, | |||
| database=dify_config.PGVECTO_RS_DATABASE, | |||
| ), | |||
| dim=dim | |||
| ) | |||
| ) | |||
| @@ -5,9 +5,9 @@ from typing import Any | |||
| import psycopg2.extras | |||
| import psycopg2.pool | |||
| from flask import current_app | |||
| from pydantic import BaseModel, model_validator | |||
| from configs import dify_config | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| @@ -45,7 +45,7 @@ CREATE TABLE IF NOT EXISTS {table_name} ( | |||
| text TEXT NOT NULL, | |||
| meta JSONB NOT NULL, | |||
| embedding vector({dimension}) NOT NULL | |||
| ) using heap; | |||
| ) using heap; | |||
| """ | |||
| @@ -185,14 +185,13 @@ class PGVectorFactory(AbstractVectorFactory): | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.PGVECTOR, collection_name)) | |||
| config = current_app.config | |||
| return PGVector( | |||
| collection_name=collection_name, | |||
| config=PGVectorConfig( | |||
| host=config.get("PGVECTOR_HOST"), | |||
| port=config.get("PGVECTOR_PORT"), | |||
| user=config.get("PGVECTOR_USER"), | |||
| password=config.get("PGVECTOR_PASSWORD"), | |||
| database=config.get("PGVECTOR_DATABASE"), | |||
| host=dify_config.PGVECTOR_HOST, | |||
| port=dify_config.PGVECTOR_PORT, | |||
| user=dify_config.PGVECTOR_USER, | |||
| password=dify_config.PGVECTOR_PASSWORD, | |||
| database=dify_config.PGVECTOR_DATABASE, | |||
| ), | |||
| ) | |||
| ) | |||
| @@ -19,6 +19,7 @@ from qdrant_client.http.models import ( | |||
| ) | |||
| from qdrant_client.local.qdrant_local import QdrantLocal | |||
| from configs import dify_config | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.field import Field | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| @@ -444,11 +445,11 @@ class QdrantVectorFactory(AbstractVectorFactory): | |||
| collection_name=collection_name, | |||
| group_id=dataset.id, | |||
| config=QdrantConfig( | |||
| endpoint=config.get('QDRANT_URL'), | |||
| api_key=config.get('QDRANT_API_KEY'), | |||
| endpoint=dify_config.QDRANT_URL, | |||
| api_key=dify_config.QDRANT_API_KEY, | |||
| root_path=config.root_path, | |||
| timeout=config.get('QDRANT_CLIENT_TIMEOUT'), | |||
| grpc_port=config.get('QDRANT_GRPC_PORT'), | |||
| prefer_grpc=config.get('QDRANT_GRPC_ENABLED') | |||
| timeout=dify_config.QDRANT_CLIENT_TIMEOUT, | |||
| grpc_port=dify_config.QDRANT_GRPC_PORT, | |||
| prefer_grpc=dify_config.QDRANT_GRPC_ENABLED | |||
| ) | |||
| ) | |||
| @@ -2,7 +2,6 @@ import json | |||
| import uuid | |||
| from typing import Any, Optional | |||
| from flask import current_app | |||
| from pydantic import BaseModel, model_validator | |||
| from sqlalchemy import Column, Sequence, String, Table, create_engine, insert | |||
| from sqlalchemy import text as sql_text | |||
| @@ -19,6 +18,7 @@ try: | |||
| except ImportError: | |||
| from sqlalchemy.ext.declarative import declarative_base | |||
| from configs import dify_config | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.models.document import Document | |||
| from extensions.ext_redis import redis_client | |||
| @@ -85,7 +85,7 @@ class RelytVector(BaseVector): | |||
| document TEXT NOT NULL, | |||
| metadata JSON NOT NULL, | |||
| embedding vector({dimension}) NOT NULL | |||
| ) using heap; | |||
| ) using heap; | |||
| """) | |||
| session.execute(create_statement) | |||
| index_statement = sql_text(f""" | |||
| @@ -313,15 +313,14 @@ class RelytVectorFactory(AbstractVectorFactory): | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.RELYT, collection_name)) | |||
| config = current_app.config | |||
| return RelytVector( | |||
| collection_name=collection_name, | |||
| config=RelytConfig( | |||
| host=config.get('RELYT_HOST'), | |||
| port=config.get('RELYT_PORT'), | |||
| user=config.get('RELYT_USER'), | |||
| password=config.get('RELYT_PASSWORD'), | |||
| database=config.get('RELYT_DATABASE'), | |||
| host=dify_config.RELYT_HOST, | |||
| port=dify_config.RELYT_PORT, | |||
| user=dify_config.RELYT_USER, | |||
| password=dify_config.RELYT_PASSWORD, | |||
| database=dify_config.RELYT_DATABASE, | |||
| ), | |||
| group_id=dataset.id | |||
| ) | |||
| @@ -1,13 +1,13 @@ | |||
| import json | |||
| from typing import Any, Optional | |||
| from flask import current_app | |||
| from pydantic import BaseModel | |||
| from tcvectordb import VectorDBClient | |||
| from tcvectordb.model import document, enum | |||
| from tcvectordb.model import index as vdb_index | |||
| from tcvectordb.model.document import Filter | |||
| from configs import dify_config | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| @@ -212,16 +212,15 @@ class TencentVectorFactory(AbstractVectorFactory): | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.TENCENT, collection_name)) | |||
| config = current_app.config | |||
| return TencentVector( | |||
| collection_name=collection_name, | |||
| config=TencentConfig( | |||
| url=config.get('TENCENT_VECTOR_DB_URL'), | |||
| api_key=config.get('TENCENT_VECTOR_DB_API_KEY'), | |||
| timeout=config.get('TENCENT_VECTOR_DB_TIMEOUT'), | |||
| username=config.get('TENCENT_VECTOR_DB_USERNAME'), | |||
| database=config.get('TENCENT_VECTOR_DB_DATABASE'), | |||
| shard=config.get('TENCENT_VECTOR_DB_SHARD'), | |||
| replicas=config.get('TENCENT_VECTOR_DB_REPLICAS'), | |||
| url=dify_config.TENCENT_VECTOR_DB_URL, | |||
| api_key=dify_config.TENCENT_VECTOR_DB_API_KEY, | |||
| timeout=dify_config.TENCENT_VECTOR_DB_TIMEOUT, | |||
| username=dify_config.TENCENT_VECTOR_DB_USERNAME, | |||
| database=dify_config.TENCENT_VECTOR_DB_DATABASE, | |||
| shard=dify_config.TENCENT_VECTOR_DB_SHARD, | |||
| replicas=dify_config.TENCENT_VECTOR_DB_REPLICAS, | |||
| ) | |||
| ) | |||
| ) | |||
| @@ -3,12 +3,12 @@ import logging | |||
| from typing import Any | |||
| import sqlalchemy | |||
| from flask import current_app | |||
| from pydantic import BaseModel, model_validator | |||
| from sqlalchemy import JSON, TEXT, Column, DateTime, String, Table, create_engine, insert | |||
| from sqlalchemy import text as sql_text | |||
| from sqlalchemy.orm import Session, declarative_base | |||
| from configs import dify_config | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| @@ -198,8 +198,8 @@ class TiDBVector(BaseVector): | |||
| with Session(self._engine) as session: | |||
| select_statement = sql_text( | |||
| f"""SELECT meta, text, distance FROM ( | |||
| SELECT meta, text, {tidb_func}(vector, "{query_vector_str}") as distance | |||
| FROM {self._collection_name} | |||
| SELECT meta, text, {tidb_func}(vector, "{query_vector_str}") as distance | |||
| FROM {self._collection_name} | |||
| ORDER BY distance | |||
| LIMIT {top_k} | |||
| ) t WHERE distance < {distance};""" | |||
| @@ -234,15 +234,14 @@ class TiDBVectorFactory(AbstractVectorFactory): | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.TIDB_VECTOR, collection_name)) | |||
| config = current_app.config | |||
| return TiDBVector( | |||
| collection_name=collection_name, | |||
| config=TiDBVectorConfig( | |||
| host=config.get('TIDB_VECTOR_HOST'), | |||
| port=config.get('TIDB_VECTOR_PORT'), | |||
| user=config.get('TIDB_VECTOR_USER'), | |||
| password=config.get('TIDB_VECTOR_PASSWORD'), | |||
| database=config.get('TIDB_VECTOR_DATABASE'), | |||
| program_name=config.get('APPLICATION_NAME'), | |||
| host=dify_config.TIDB_VECTOR_HOST, | |||
| port=dify_config.TIDB_VECTOR_PORT, | |||
| user=dify_config.TIDB_VECTOR_USER, | |||
| password=dify_config.TIDB_VECTOR_PASSWORD, | |||
| database=dify_config.TIDB_VECTOR_DATABASE, | |||
| program_name=dify_config.APPLICATION_NAME, | |||
| ), | |||
| ) | |||
| ) | |||
| @@ -1,8 +1,7 @@ | |||
| from abc import ABC, abstractmethod | |||
| from typing import Any | |||
| from flask import current_app | |||
| from configs import dify_config | |||
| from core.embedding.cached_embedding import CacheEmbedding | |||
| from core.model_manager import ModelManager | |||
| from core.model_runtime.entities.model_entities import ModelType | |||
| @@ -37,8 +36,7 @@ class Vector: | |||
| self._vector_processor = self._init_vector() | |||
| def _init_vector(self) -> BaseVector: | |||
| config = current_app.config | |||
| vector_type = config.get('VECTOR_STORE') | |||
| vector_type = dify_config.VECTOR_STORE | |||
| if self._dataset.index_struct_dict: | |||
| vector_type = self._dataset.index_struct_dict['type'] | |||
| @@ -4,9 +4,9 @@ from typing import Any, Optional | |||
| import requests | |||
| import weaviate | |||
| from flask import current_app | |||
| from pydantic import BaseModel, model_validator | |||
| from configs import dify_config | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.field import Field | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| @@ -281,9 +281,9 @@ class WeaviateVectorFactory(AbstractVectorFactory): | |||
| return WeaviateVector( | |||
| collection_name=collection_name, | |||
| config=WeaviateConfig( | |||
| endpoint=current_app.config.get('WEAVIATE_ENDPOINT'), | |||
| api_key=current_app.config.get('WEAVIATE_API_KEY'), | |||
| batch_size=int(current_app.config.get('WEAVIATE_BATCH_SIZE')) | |||
| endpoint=dify_config.WEAVIATE_ENDPOINT, | |||
| api_key=dify_config.WEAVIATE_API_KEY, | |||
| batch_size=dify_config.WEAVIATE_BATCH_SIZE | |||
| ), | |||
| attributes=attributes | |||
| ) | |||
| @@ -5,8 +5,8 @@ from typing import Union | |||
| from urllib.parse import unquote | |||
| import requests | |||
| from flask import current_app | |||
| from configs import dify_config | |||
| from core.rag.extractor.csv_extractor import CSVExtractor | |||
| from core.rag.extractor.entity.datasource_type import DatasourceType | |||
| from core.rag.extractor.entity.extract_setting import ExtractSetting | |||
| @@ -94,9 +94,9 @@ class ExtractProcessor: | |||
| storage.download(upload_file.key, file_path) | |||
| input_file = Path(file_path) | |||
| file_extension = input_file.suffix.lower() | |||
| etl_type = current_app.config['ETL_TYPE'] | |||
| unstructured_api_url = current_app.config['UNSTRUCTURED_API_URL'] | |||
| unstructured_api_key = current_app.config['UNSTRUCTURED_API_KEY'] | |||
| etl_type = dify_config.ETL_TYPE | |||
| unstructured_api_url = dify_config.UNSTRUCTURED_API_URL | |||
| unstructured_api_key = dify_config.UNSTRUCTURED_API_KEY | |||
| if etl_type == 'Unstructured': | |||
| if file_extension == '.xlsx' or file_extension == '.xls': | |||
| extractor = ExcelExtractor(file_path) | |||
| @@ -3,8 +3,8 @@ import logging | |||
| from typing import Any, Optional | |||
| import requests | |||
| from flask import current_app | |||
| from configs import dify_config | |||
| from core.rag.extractor.extractor_base import BaseExtractor | |||
| from core.rag.models.document import Document | |||
| from extensions.ext_database import db | |||
| @@ -49,7 +49,7 @@ class NotionExtractor(BaseExtractor): | |||
| self._notion_access_token = self._get_access_token(tenant_id, | |||
| self._notion_workspace_id) | |||
| if not self._notion_access_token: | |||
| integration_token = current_app.config.get('NOTION_INTEGRATION_TOKEN') | |||
| integration_token = dify_config.NOTION_INTEGRATION_TOKEN | |||
| if integration_token is None: | |||
| raise ValueError( | |||
| "Must specify `integration_token` or set environment " | |||
| @@ -8,8 +8,8 @@ from urllib.parse import urlparse | |||
| import requests | |||
| from docx import Document as DocxDocument | |||
| from flask import current_app | |||
| from configs import dify_config | |||
| from core.rag.extractor.extractor_base import BaseExtractor | |||
| from core.rag.models.document import Document | |||
| from extensions.ext_database import db | |||
| @@ -96,10 +96,9 @@ class WordExtractor(BaseExtractor): | |||
| storage.save(file_key, rel.target_part.blob) | |||
| # save file to db | |||
| config = current_app.config | |||
| upload_file = UploadFile( | |||
| tenant_id=self.tenant_id, | |||
| storage_type=config['STORAGE_TYPE'], | |||
| storage_type=dify_config.STORAGE_TYPE, | |||
| key=file_key, | |||
| name=file_key, | |||
| size=0, | |||
| @@ -114,7 +113,7 @@ class WordExtractor(BaseExtractor): | |||
| db.session.add(upload_file) | |||
| db.session.commit() | |||
| image_map[rel.target_part] = f"}/files/{upload_file.id}/image-preview)" | |||
| image_map[rel.target_part] = f"" | |||
| return image_map | |||
| @@ -2,8 +2,7 @@ | |||
| from abc import ABC, abstractmethod | |||
| from typing import Optional | |||
| from flask import current_app | |||
| from configs import dify_config | |||
| from core.model_manager import ModelInstance | |||
| from core.rag.extractor.entity.extract_setting import ExtractSetting | |||
| from core.rag.models.document import Document | |||
| @@ -48,7 +47,7 @@ class BaseIndexProcessor(ABC): | |||
| # The user-defined segmentation rule | |||
| rules = processing_rule['rules'] | |||
| segmentation = rules["segmentation"] | |||
| max_segmentation_tokens_length = int(current_app.config['INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH']) | |||
| max_segmentation_tokens_length = dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH | |||
| if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > max_segmentation_tokens_length: | |||
| raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.") | |||