Bladeren bron

update dataset embedding model, update document status to be indexing (#7145)

tags/0.7.0
Jyong 1 jaar geleden
bovenliggende
commit
c6b0dc6a29
No account linked to committer's email address
1 gewijzigde bestanden met toevoegingen van 70 en 41 verwijderingen
  1. 70
    41
      api/tasks/deal_dataset_vector_index_task.py

+ 70
- 41
api/tasks/deal_dataset_vector_index_task.py Bestand weergeven

@@ -42,31 +42,42 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
).all()

if dataset_documents:
documents = []
for dataset_document in dataset_documents:
# delete from vector index
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True
) .order_by(DocumentSegment.position.asc()).all()
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
dataset_documents_ids = [doc.id for doc in dataset_documents]
db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)) \
.update({"indexing_status": "indexing"}, synchronize_session=False)
db.session.commit()

documents.append(document)
for dataset_document in dataset_documents:
try:
# add from vector index
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True
) .order_by(DocumentSegment.position.asc()).all()
if segments:
documents = []
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)

# save vector index
index_processor.load(dataset, documents, with_keywords=False)
documents.append(document)
# save vector index
index_processor.load(dataset, documents, with_keywords=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id) \
.update({"indexing_status": "completed"}, synchronize_session=False)
db.session.commit()
except Exception as e:
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id) \
.update({"indexing_status": "error", "error": str(e)}, synchronize_session=False)
db.session.commit()
elif action == 'update':
# clean index
index_processor.clean(dataset, None, with_keywords=False)
dataset_documents = db.session.query(DatasetDocument).filter(
DatasetDocument.dataset_id == dataset_id,
DatasetDocument.indexing_status == 'completed',
@@ -75,28 +86,46 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
).all()
# add new index
if dataset_documents:
documents = []
# update document status
dataset_documents_ids = [doc.id for doc in dataset_documents]
db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)) \
.update({"indexing_status": "indexing"}, synchronize_session=False)
db.session.commit()

# clean index
index_processor.clean(dataset, None, with_keywords=False)

for dataset_document in dataset_documents:
# delete from vector index
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True
).order_by(DocumentSegment.position.asc()).all()
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
# update from vector index
try:
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True
).order_by(DocumentSegment.position.asc()).all()
if segments:
documents = []
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)

documents.append(document)
documents.append(document)
# save vector index
index_processor.load(dataset, documents, with_keywords=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id) \
.update({"indexing_status": "completed"}, synchronize_session=False)
db.session.commit()
except Exception as e:
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id) \
.update({"indexing_status": "error", "error": str(e)}, synchronize_session=False)
db.session.commit()

# save vector index
index_processor.load(dataset, documents, with_keywords=False)

end_at = time.perf_counter()
logging.info(

Laden…
Annuleren
Opslaan