Browse Source

fix: hf hosted inference check (#1128)

tags/0.3.20
takatost 2 years ago
parent
commit
c4d8bdc3db
No account linked to committer's email address

+ 5
- 3
api/core/model_providers/models/llm/huggingface_hub_model.py View File

@@ -1,6 +1,5 @@
from typing import List, Optional, Any

from langchain import HuggingFaceHub
from langchain.callbacks.manager import Callbacks
from langchain.schema import LLMResult

@@ -9,6 +8,7 @@ from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.huggingface_endpoint_llm import HuggingFaceEndpointLLM
from core.third_party.langchain.llms.huggingface_hub_llm import HuggingFaceHubLLM


class HuggingfaceHubModel(BaseLLM):
@@ -31,7 +31,7 @@ class HuggingfaceHubModel(BaseLLM):
streaming=streaming
)
else:
client = HuggingFaceHub(
client = HuggingFaceHubLLM(
repo_id=self.name,
task=self.credentials['task_type'],
model_kwargs=provider_model_kwargs,
@@ -88,4 +88,6 @@ class HuggingfaceHubModel(BaseLLM):
if 'baichuan' in self.name.lower():
return False

return True
return True
else:
return False

+ 2
- 1
api/core/model_providers/providers/huggingface_hub_provider.py View File

@@ -89,7 +89,8 @@ class HuggingfaceHubProvider(BaseModelProvider):
raise CredentialsValidateFailedError('Task Type must be provided.')

if credentials['task_type'] not in ("text2text-generation", "text-generation", "summarization"):
raise CredentialsValidateFailedError('Task Type must be one of text2text-generation, text-generation, summarization.')
raise CredentialsValidateFailedError('Task Type must be one of text2text-generation, '
'text-generation, summarization.')

try:
llm = HuggingFaceEndpointLLM(

+ 62
- 0
api/core/third_party/langchain/llms/huggingface_hub_llm.py View File

@@ -0,0 +1,62 @@
from typing import Dict, Optional, List, Any

from huggingface_hub import HfApi, InferenceApi
from langchain import HuggingFaceHub
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.huggingface_hub import VALID_TASKS
from pydantic import root_validator

from langchain.utils import get_from_dict_or_env


class HuggingFaceHubLLM(HuggingFaceHub):
"""HuggingFaceHub models.

To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.

Only supports `text-generation`, `text2text-generation` and `summarization` for now.

Example:
.. code-block:: python

from langchain.llms import HuggingFaceHub
hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key")
"""

@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingfacehub_api_token = get_from_dict_or_env(
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
)
client = InferenceApi(
repo_id=values["repo_id"],
token=huggingfacehub_api_token,
task=values.get("task"),
)
client.options = {"wait_for_model": False, "use_gpu": False}
values["client"] = client
return values

def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
hfapi = HfApi(token=self.huggingfacehub_api_token)
model_info = hfapi.model_info(repo_id=self.repo_id)
if not model_info:
raise ValueError(f"Model {self.repo_id} not found.")

if 'inference' in model_info.cardData and not model_info.cardData['inference']:
raise ValueError(f"Inference API has been turned off for this model {self.repo_id}.")

if model_info.pipeline_tag not in VALID_TASKS:
raise ValueError(f"Model {self.repo_id} is not a valid task, "
f"must be one of {VALID_TASKS}.")

return super()._call(prompt, stop, run_manager, **kwargs)

Loading…
Cancel
Save