Parcourir la source

fix: next suggest question logic problem (#6451)

Co-authored-by: evenyan <yikun.yan@ubtrobot.com>
tags/0.6.15
Even il y a 1 an
Parent
révision
c013086e64
Aucun compte lié à l'adresse e-mail de l'auteur
2 fichiers modifiés avec 2 ajouts et 1 suppressions
  1. 1
    0
      api/core/llm_generator/prompts.py
  2. 1
    1
      api/core/memory/token_buffer_memory.py

+ 1
- 0
api/core/llm_generator/prompts.py Voir le fichier

SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = ( SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT = (
"Please help me predict the three most likely questions that human would ask, " "Please help me predict the three most likely questions that human would ask, "
"and keeping each question under 20 characters.\n" "and keeping each question under 20 characters.\n"
"MAKE SURE your output is the SAME language as the Assistant's latest response(if the main response is written in Chinese, then the language of your output must be using Chinese.)!\n"
"The output must be an array in JSON format following the specified schema:\n" "The output must be an array in JSON format following the specified schema:\n"
"[\"question1\",\"question2\",\"question3\"]\n" "[\"question1\",\"question2\",\"question3\"]\n"
) )

+ 1
- 1
api/core/memory/token_buffer_memory.py Voir le fichier



if curr_message_tokens > max_token_limit: if curr_message_tokens > max_token_limit:
pruned_memory = [] pruned_memory = []
while curr_message_tokens > max_token_limit and prompt_messages:
while curr_message_tokens > max_token_limit and len(prompt_messages)>1:
pruned_memory.append(prompt_messages.pop(0)) pruned_memory.append(prompt_messages.pop(0))
curr_message_tokens = self.model_instance.get_llm_num_tokens( curr_message_tokens = self.model_instance.get_llm_num_tokens(
prompt_messages prompt_messages

Chargement…
Annuler
Enregistrer