Преглед на файлове

improve: generalize vector factory classes and vector type (#5033)

tags/0.6.11
Bowen Liang преди 1 година
родител
ревизия
bdad993901
No account linked to committer's email address

+ 11
- 10
api/commands.py Целия файл



from constants.languages import languages from constants.languages import languages
from core.rag.datasource.vdb.vector_factory import Vector from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document from core.rag.models.document import Document
from extensions.ext_database import db from extensions.ext_database import db
from libs.helper import email as email_validate from libs.helper import email as email_validate
skipped_count = skipped_count + 1 skipped_count = skipped_count + 1
continue continue
collection_name = '' collection_name = ''
if vector_type == "weaviate":
if vector_type == VectorType.WEAVIATE:
dataset_id = dataset.id dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id) collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = { index_struct_dict = {
"type": 'weaviate',
"type": VectorType.WEAVIATE,
"vector_store": {"class_prefix": collection_name} "vector_store": {"class_prefix": collection_name}
} }
dataset.index_struct = json.dumps(index_struct_dict) dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == "qdrant":
elif vector_type == VectorType.QDRANT:
if dataset.collection_binding_id: if dataset.collection_binding_id:
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \ dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.id == dataset.collection_binding_id). \ filter(DatasetCollectionBinding.id == dataset.collection_binding_id). \
dataset_id = dataset.id dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id) collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = { index_struct_dict = {
"type": 'qdrant',
"type": VectorType.QDRANT,
"vector_store": {"class_prefix": collection_name} "vector_store": {"class_prefix": collection_name}
} }
dataset.index_struct = json.dumps(index_struct_dict) dataset.index_struct = json.dumps(index_struct_dict)


elif vector_type == "milvus":
elif vector_type == VectorType.MILVUS:
dataset_id = dataset.id dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id) collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = { index_struct_dict = {
"type": 'milvus',
"type": VectorType.MILVUS,
"vector_store": {"class_prefix": collection_name} "vector_store": {"class_prefix": collection_name}
} }
dataset.index_struct = json.dumps(index_struct_dict) dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == "relyt":
elif vector_type == VectorType.RELYT:
dataset_id = dataset.id dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id) collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = { index_struct_dict = {
"vector_store": {"class_prefix": collection_name} "vector_store": {"class_prefix": collection_name}
} }
dataset.index_struct = json.dumps(index_struct_dict) dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == "pgvector":
elif vector_type == VectorType.PGVECTOR:
dataset_id = dataset.id dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id) collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = { index_struct_dict = {
"type": 'pgvector',
"type": VectorType.PGVECTOR,
"vector_store": {"class_prefix": collection_name} "vector_store": {"class_prefix": collection_name}
} }
dataset.index_struct = json.dumps(index_struct_dict) dataset.index_struct = json.dumps(index_struct_dict)
else: else:
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")
raise ValueError(f"Vector store {vector_type} is not supported.")


vector = Vector(dataset) vector = Vector(dataset)
click.echo(f"Start to migrate dataset {dataset.id}.") click.echo(f"Start to migrate dataset {dataset.id}.")

+ 33
- 28
api/controllers/console/datasets/datasets.py Целия файл

from core.indexing_runner import IndexingRunner from core.indexing_runner import IndexingRunner
from core.model_runtime.entities.model_entities import ModelType from core.model_runtime.entities.model_entities import ModelType
from core.provider_manager import ProviderManager from core.provider_manager import ProviderManager
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.extractor.entity.extract_setting import ExtractSetting from core.rag.extractor.entity.extract_setting import ExtractSetting
from extensions.ext_database import db from extensions.ext_database import db
from fields.app_fields import related_app_list from fields.app_fields import related_app_list
@account_initialization_required @account_initialization_required
def get(self): def get(self):
vector_type = current_app.config['VECTOR_STORE'] vector_type = current_app.config['VECTOR_STORE']
if vector_type in {"milvus", "relyt", "pgvector", "pgvecto_rs", 'tidb_vector'}:
return {
'retrieval_method': [
'semantic_search'
]
}
elif vector_type in {"qdrant", "weaviate"}:
return {
'retrieval_method': [
'semantic_search', 'full_text_search', 'hybrid_search'
]
}
else:
raise ValueError("Unsupported vector db type.")

match vector_type:
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR:
return {
'retrieval_method': [
'semantic_search'
]
}
case VectorType.QDRANT | VectorType.WEAVIATE:
return {
'retrieval_method': [
'semantic_search', 'full_text_search', 'hybrid_search'
]
}
case _:
raise ValueError(f"Unsupported vector db type {vector_type}.")




class DatasetRetrievalSettingMockApi(Resource): class DatasetRetrievalSettingMockApi(Resource):
@login_required @login_required
@account_initialization_required @account_initialization_required
def get(self, vector_type): def get(self, vector_type):
if vector_type in {'milvus', 'relyt', 'pgvector', 'tidb_vector'}:
return {
'retrieval_method': [
'semantic_search'
]
}
elif vector_type in {'qdrant', 'weaviate'}:
return {
'retrieval_method': [
'semantic_search', 'full_text_search', 'hybrid_search'
]
}
else:
raise ValueError("Unsupported vector db type.")
match vector_type:
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR:
return {
'retrieval_method': [
'semantic_search'
]
}
case VectorType.QDRANT | VectorType.WEAVIATE:
return {
'retrieval_method': [
'semantic_search', 'full_text_search', 'hybrid_search'
]
}
case _:
raise ValueError(f"Unsupported vector db type {vector_type}.")



class DatasetErrorDocs(Resource): class DatasetErrorDocs(Resource):
@setup_required @setup_required

+ 34
- 2
api/core/rag/datasource/vdb/milvus/milvus_vector.py Целия файл

import json
import logging import logging
from typing import Any, Optional from typing import Any, Optional
from uuid import uuid4 from uuid import uuid4


from flask import current_app
from pydantic import BaseModel, root_validator from pydantic import BaseModel, root_validator
from pymilvus import MilvusClient, MilvusException, connections from pymilvus import MilvusClient, MilvusException, connections


from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.field import Field from core.rag.datasource.vdb.field import Field
from core.rag.datasource.vdb.vector_base import BaseVector from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document from core.rag.models.document import Document
from extensions.ext_redis import redis_client from extensions.ext_redis import redis_client
from models.dataset import Dataset


logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)


self._fields = [] self._fields = []


def get_type(self) -> str: def get_type(self) -> str:
return 'milvus'
return VectorType.MILVUS


def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs): def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
index_params = { index_params = {
schema=schema, index_param=index_params, schema=schema, index_param=index_params,
consistency_level=self._consistency_level) consistency_level=self._consistency_level)
redis_client.set(collection_exist_cache_key, 1, ex=3600) redis_client.set(collection_exist_cache_key, 1, ex=3600)

def _init_client(self, config) -> MilvusClient: def _init_client(self, config) -> MilvusClient:
if config.secure: if config.secure:
uri = "https://" + str(config.host) + ":" + str(config.port) uri = "https://" + str(config.host) + ":" + str(config.port)
else: else:
uri = "http://" + str(config.host) + ":" + str(config.port) uri = "http://" + str(config.host) + ":" + str(config.port)
client = MilvusClient(uri=uri, user=config.user, password=config.password,db_name=config.database)
client = MilvusClient(uri=uri, user=config.user, password=config.password, db_name=config.database)
return client return client


class MilvusVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> MilvusVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
dataset.index_struct = json.dumps(
self.gen_index_struct_dict(VectorType.WEAVIATE, collection_name))

config = current_app.config
return MilvusVector(
collection_name=collection_name,
config=MilvusConfig(
host=config.get('MILVUS_HOST'),
port=config.get('MILVUS_PORT'),
user=config.get('MILVUS_USER'),
password=config.get('MILVUS_PASSWORD'),
secure=config.get('MILVUS_SECURE'),
database=config.get('MILVUS_DATABASE'),
)
)

+ 32
- 1
api/core/rag/datasource/vdb/pgvecto_rs/pgvecto_rs.py Целия файл

import json
import logging import logging
from typing import Any from typing import Any
from uuid import UUID, uuid4 from uuid import UUID, uuid4


from flask import current_app
from numpy import ndarray from numpy import ndarray
from pgvecto_rs.sqlalchemy import Vector from pgvecto_rs.sqlalchemy import Vector
from pydantic import BaseModel, root_validator from pydantic import BaseModel, root_validator
from sqlalchemy.dialects import postgresql from sqlalchemy.dialects import postgresql
from sqlalchemy.orm import Mapped, Session, mapped_column from sqlalchemy.orm import Mapped, Session, mapped_column


from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.pgvecto_rs.collection import CollectionORM from core.rag.datasource.vdb.pgvecto_rs.collection import CollectionORM
from core.rag.datasource.vdb.vector_base import BaseVector from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document from core.rag.models.document import Document
from extensions.ext_redis import redis_client from extensions.ext_redis import redis_client
from models.dataset import Dataset


logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)


self._distance_op = "<=>" self._distance_op = "<=>"


def get_type(self) -> str: def get_type(self) -> str:
return 'pgvecto-rs'
return VectorType.PGVECTO_RS


def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs): def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
self.create_collection(len(embeddings[0])) self.create_collection(len(embeddings[0]))
# docs.append(doc) # docs.append(doc)
# return docs # return docs
return [] return []


class PGVectoRSFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> PGVectoRS:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix.lower()
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
dataset.index_struct = json.dumps(
self.gen_index_struct_dict(VectorType.WEAVIATE, collection_name))
dim = len(embeddings.embed_query("pgvecto_rs"))
config = current_app.config
return PGVectoRS(
collection_name=collection_name,
config=PgvectoRSConfig(
host=config.get('PGVECTO_RS_HOST'),
port=config.get('PGVECTO_RS_PORT'),
user=config.get('PGVECTO_RS_USER'),
password=config.get('PGVECTO_RS_PASSWORD'),
database=config.get('PGVECTO_RS_DATABASE'),
),
dim=dim
)

+ 30
- 1
api/core/rag/datasource/vdb/pgvector/pgvector.py Целия файл



import psycopg2.extras import psycopg2.extras
import psycopg2.pool import psycopg2.pool
from flask import current_app
from pydantic import BaseModel, root_validator from pydantic import BaseModel, root_validator


from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.vector_base import BaseVector from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document from core.rag.models.document import Document
from extensions.ext_redis import redis_client from extensions.ext_redis import redis_client
from models.dataset import Dataset




class PGVectorConfig(BaseModel): class PGVectorConfig(BaseModel):
self.table_name = f"embedding_{collection_name}" self.table_name = f"embedding_{collection_name}"


def get_type(self) -> str: def get_type(self) -> str:
return "pgvector"
return VectorType.PGVECTOR


def _create_connection_pool(self, config: PGVectorConfig): def _create_connection_pool(self, config: PGVectorConfig):
return psycopg2.pool.SimpleConnectionPool( return psycopg2.pool.SimpleConnectionPool(
cur.execute(SQL_CREATE_TABLE.format(table_name=self.table_name, dimension=dimension)) cur.execute(SQL_CREATE_TABLE.format(table_name=self.table_name, dimension=dimension))
# TODO: create index https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing # TODO: create index https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing
redis_client.set(collection_exist_cache_key, 1, ex=3600) redis_client.set(collection_exist_cache_key, 1, ex=3600)


class PGVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> PGVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
collection_name = class_prefix
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
dataset.index_struct = json.dumps(
self.gen_index_struct_dict(VectorType.PGVECTOR, collection_name))

config = current_app.config
return PGVector(
collection_name=collection_name,
config=PGVectorConfig(
host=config.get("PGVECTOR_HOST"),
port=config.get("PGVECTOR_PORT"),
user=config.get("PGVECTOR_USER"),
password=config.get("PGVECTOR_PASSWORD"),
database=config.get("PGVECTOR_DATABASE"),
),
)

+ 45
- 1
api/core/rag/datasource/vdb/qdrant/qdrant_vector.py Целия файл

import json
import os import os
import uuid import uuid
from collections.abc import Generator, Iterable, Sequence from collections.abc import Generator, Iterable, Sequence
from typing import TYPE_CHECKING, Any, Optional, Union, cast from typing import TYPE_CHECKING, Any, Optional, Union, cast


import qdrant_client import qdrant_client
from flask import current_app
from pydantic import BaseModel from pydantic import BaseModel
from qdrant_client.http import models as rest from qdrant_client.http import models as rest
from qdrant_client.http.models import ( from qdrant_client.http.models import (
) )
from qdrant_client.local.qdrant_local import QdrantLocal from qdrant_client.local.qdrant_local import QdrantLocal


from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.field import Field from core.rag.datasource.vdb.field import Field
from core.rag.datasource.vdb.vector_base import BaseVector from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document from core.rag.models.document import Document
from extensions.ext_database import db
from extensions.ext_redis import redis_client from extensions.ext_redis import redis_client
from models.dataset import Dataset, DatasetCollectionBinding


if TYPE_CHECKING: if TYPE_CHECKING:
from qdrant_client import grpc # noqa from qdrant_client import grpc # noqa
self._group_id = group_id self._group_id = group_id


def get_type(self) -> str: def get_type(self) -> str:
return 'qdrant'
return VectorType.QDRANT


def to_index_struct(self) -> dict: def to_index_struct(self) -> dict:
return { return {
page_content=scored_point.payload.get(content_payload_key), page_content=scored_point.payload.get(content_payload_key),
metadata=scored_point.payload.get(metadata_payload_key) or {}, metadata=scored_point.payload.get(metadata_payload_key) or {},
) )


class QdrantVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> QdrantVector:
if dataset.collection_binding_id:
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.id == dataset.collection_binding_id). \
one_or_none()
if dataset_collection_binding:
collection_name = dataset_collection_binding.collection_name
else:
raise ValueError('Dataset Collection Bindings is not exist!')
else:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)

if not dataset.index_struct_dict:
dataset.index_struct = json.dumps(
self.gen_index_struct_dict(VectorType.QDRANT, collection_name))

config = current_app.config
return QdrantVector(
collection_name=collection_name,
group_id=dataset.id,
config=QdrantConfig(
endpoint=config.get('QDRANT_URL'),
api_key=config.get('QDRANT_API_KEY'),
root_path=config.root_path,
timeout=config.get('QDRANT_CLIENT_TIMEOUT'),
grpc_port=config.get('QDRANT_GRPC_PORT'),
prefer_grpc=config.get('QDRANT_GRPC_ENABLED')
)
)

+ 37
- 5
api/core/rag/datasource/vdb/relyt/relyt_vector.py Целия файл

import json
import uuid import uuid
from typing import Any, Optional from typing import Any, Optional


from flask import current_app
from pydantic import BaseModel, root_validator from pydantic import BaseModel, root_validator
from sqlalchemy import Column, Sequence, String, Table, create_engine, insert from sqlalchemy import Column, Sequence, String, Table, create_engine, insert
from sqlalchemy import text as sql_text from sqlalchemy import text as sql_text
from sqlalchemy.dialects.postgresql import JSON, TEXT from sqlalchemy.dialects.postgresql import JSON, TEXT
from sqlalchemy.orm import Session from sqlalchemy.orm import Session


from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from models.dataset import Dataset

try: try:
from sqlalchemy.orm import declarative_base from sqlalchemy.orm import declarative_base
except ImportError: except ImportError:
self._group_id = group_id self._group_id = group_id


def get_type(self) -> str: def get_type(self) -> str:
return 'relyt'
return VectorType.RELYT


def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs): def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
index_params = {} index_params = {}
return docs return docs


def similarity_search_with_score_by_vector( def similarity_search_with_score_by_vector(
self,
embedding: list[float],
k: int = 4,
filter: Optional[dict] = None,
self,
embedding: list[float],
k: int = 4,
filter: Optional[dict] = None,
) -> list[tuple[Document, float]]: ) -> list[tuple[Document, float]]:
# Add the filter if provided # Add the filter if provided
try: try:
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]: def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
# milvus/zilliz/relyt doesn't support bm25 search # milvus/zilliz/relyt doesn't support bm25 search
return [] return []


class RelytVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> RelytVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
dataset.index_struct = json.dumps(
self.gen_index_struct_dict(VectorType.RELYT, collection_name))

config = current_app.config
return RelytVector(
collection_name=collection_name,
config=RelytConfig(
host=config.get('RELYT_HOST'),
port=config.get('RELYT_PORT'),
user=config.get('RELYT_USER'),
password=config.get('RELYT_PASSWORD'),
database=config.get('RELYT_DATABASE'),
),
group_id=dataset.id
)

+ 33
- 0
api/core/rag/datasource/vdb/tidb_vector/tidb_vector.py Целия файл

from typing import Any from typing import Any


import sqlalchemy import sqlalchemy
from flask import current_app
from pydantic import BaseModel, root_validator from pydantic import BaseModel, root_validator
from sqlalchemy import JSON, TEXT, Column, DateTime, String, Table, create_engine, insert from sqlalchemy import JSON, TEXT, Column, DateTime, String, Table, create_engine, insert
from sqlalchemy import text as sql_text from sqlalchemy import text as sql_text
from sqlalchemy.orm import Session, declarative_base from sqlalchemy.orm import Session, declarative_base


from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.vector_base import BaseVector from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document from core.rag.models.document import Document
from extensions.ext_redis import redis_client from extensions.ext_redis import redis_client
from models.dataset import Dataset


logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)




class TiDBVector(BaseVector): class TiDBVector(BaseVector):


def get_type(self) -> str:
return VectorType.TIDB_VECTOR

def _table(self, dim: int) -> Table: def _table(self, dim: int) -> Table:
from tidb_vector.sqlalchemy import VectorType from tidb_vector.sqlalchemy import VectorType
return Table( return Table(
with Session(self._engine) as session: with Session(self._engine) as session:
session.execute(sql_text(f"""DROP TABLE IF EXISTS {self._collection_name};""")) session.execute(sql_text(f"""DROP TABLE IF EXISTS {self._collection_name};"""))
session.commit() session.commit()


class TiDBVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> TiDBVector:

if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix.lower()
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
dataset.index_struct = json.dumps(
self.gen_index_struct_dict(VectorType.TIDB_VECTOR, collection_name))

config = current_app.config
return TiDBVector(
collection_name=collection_name,
config=TiDBVectorConfig(
host=config.get('TIDB_VECTOR_HOST'),
port=config.get('TIDB_VECTOR_PORT'),
user=config.get('TIDB_VECTOR_USER'),
password=config.get('TIDB_VECTOR_PASSWORD'),
database=config.get('TIDB_VECTOR_DATABASE'),
),
)

+ 4
- 0
api/core/rag/datasource/vdb/vector_base.py Целия файл

def __init__(self, collection_name: str): def __init__(self, collection_name: str):
self._collection_name = collection_name self._collection_name = collection_name


@abstractmethod
def get_type(self) -> str:
raise NotImplementedError

@abstractmethod @abstractmethod
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs): def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
raise NotImplementedError raise NotImplementedError

+ 46
- 185
api/core/rag/datasource/vdb/vector_factory.py Целия файл

import json
from abc import ABC, abstractmethod
from typing import Any from typing import Any


from flask import current_app from flask import current_app
from core.model_runtime.entities.model_entities import ModelType from core.model_runtime.entities.model_entities import ModelType
from core.rag.datasource.entity.embedding import Embeddings from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.vector_base import BaseVector from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document from core.rag.models.document import Document
from extensions.ext_database import db
from models.dataset import Dataset, DatasetCollectionBinding
from models.dataset import Dataset


class AbstractVectorFactory(ABC):
@abstractmethod
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> BaseVector:
raise NotImplementedError

@staticmethod
def gen_index_struct_dict(vector_type: VectorType, collection_name: str) -> dict:
index_struct_dict = {
"type": vector_type,
"vector_store": {"class_prefix": collection_name}
}
return index_struct_dict




class Vector: class Vector:
if not vector_type: if not vector_type:
raise ValueError("Vector store must be specified.") raise ValueError("Vector store must be specified.")


if vector_type == "weaviate":
from core.rag.datasource.vdb.weaviate.weaviate_vector import WeaviateConfig, WeaviateVector
if self._dataset.index_struct_dict:
class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix
else:
dataset_id = self._dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": 'weaviate',
"vector_store": {"class_prefix": collection_name}
}
self._dataset.index_struct = json.dumps(index_struct_dict)
return WeaviateVector(
collection_name=collection_name,
config=WeaviateConfig(
endpoint=config.get('WEAVIATE_ENDPOINT'),
api_key=config.get('WEAVIATE_API_KEY'),
batch_size=int(config.get('WEAVIATE_BATCH_SIZE'))
),
attributes=self._attributes
)
elif vector_type == "qdrant":
from core.rag.datasource.vdb.qdrant.qdrant_vector import QdrantConfig, QdrantVector
if self._dataset.collection_binding_id:
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.id == self._dataset.collection_binding_id). \
one_or_none()
if dataset_collection_binding:
collection_name = dataset_collection_binding.collection_name
else:
raise ValueError('Dataset Collection Bindings is not exist!')
else:
if self._dataset.index_struct_dict:
class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix
else:
dataset_id = self._dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)

if not self._dataset.index_struct_dict:
index_struct_dict = {
"type": 'qdrant',
"vector_store": {"class_prefix": collection_name}
}
self._dataset.index_struct = json.dumps(index_struct_dict)

return QdrantVector(
collection_name=collection_name,
group_id=self._dataset.id,
config=QdrantConfig(
endpoint=config.get('QDRANT_URL'),
api_key=config.get('QDRANT_API_KEY'),
root_path=current_app.root_path,
timeout=config.get('QDRANT_CLIENT_TIMEOUT'),
grpc_port=config.get('QDRANT_GRPC_PORT'),
prefer_grpc=config.get('QDRANT_GRPC_ENABLED')
)
)
elif vector_type == "milvus":
from core.rag.datasource.vdb.milvus.milvus_vector import MilvusConfig, MilvusVector
if self._dataset.index_struct_dict:
class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix
else:
dataset_id = self._dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": 'milvus',
"vector_store": {"class_prefix": collection_name}
}
self._dataset.index_struct = json.dumps(index_struct_dict)
return MilvusVector(
collection_name=collection_name,
config=MilvusConfig(
host=config.get('MILVUS_HOST'),
port=config.get('MILVUS_PORT'),
user=config.get('MILVUS_USER'),
password=config.get('MILVUS_PASSWORD'),
secure=config.get('MILVUS_SECURE'),
database=config.get('MILVUS_DATABASE'),
)
)
elif vector_type == "relyt":
from core.rag.datasource.vdb.relyt.relyt_vector import RelytConfig, RelytVector
if self._dataset.index_struct_dict:
class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix
else:
dataset_id = self._dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": 'relyt',
"vector_store": {"class_prefix": collection_name}
}
self._dataset.index_struct = json.dumps(index_struct_dict)
return RelytVector(
collection_name=collection_name,
config=RelytConfig(
host=config.get('RELYT_HOST'),
port=config.get('RELYT_PORT'),
user=config.get('RELYT_USER'),
password=config.get('RELYT_PASSWORD'),
database=config.get('RELYT_DATABASE'),
),
group_id=self._dataset.id
)
elif vector_type == "pgvecto_rs":
from core.rag.datasource.vdb.pgvecto_rs.pgvecto_rs import PGVectoRS, PgvectoRSConfig
if self._dataset.index_struct_dict:
class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix.lower()
else:
dataset_id = self._dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
index_struct_dict = {
"type": 'pgvecto_rs',
"vector_store": {"class_prefix": collection_name}
}
self._dataset.index_struct = json.dumps(index_struct_dict)
dim = len(self._embeddings.embed_query("pgvecto_rs"))
return PGVectoRS(
collection_name=collection_name,
config=PgvectoRSConfig(
host=config.get('PGVECTO_RS_HOST'),
port=config.get('PGVECTO_RS_PORT'),
user=config.get('PGVECTO_RS_USER'),
password=config.get('PGVECTO_RS_PASSWORD'),
database=config.get('PGVECTO_RS_DATABASE'),
),
dim=dim
)
elif vector_type == "pgvector":
from core.rag.datasource.vdb.pgvector.pgvector import PGVector, PGVectorConfig

if self._dataset.index_struct_dict:
class_prefix: str = self._dataset.index_struct_dict["vector_store"]["class_prefix"]
collection_name = class_prefix
else:
dataset_id = self._dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": "pgvector",
"vector_store": {"class_prefix": collection_name}}
self._dataset.index_struct = json.dumps(index_struct_dict)
return PGVector(
collection_name=collection_name,
config=PGVectorConfig(
host=config.get("PGVECTOR_HOST"),
port=config.get("PGVECTOR_PORT"),
user=config.get("PGVECTOR_USER"),
password=config.get("PGVECTOR_PASSWORD"),
database=config.get("PGVECTOR_DATABASE"),
),
)
elif vector_type == "tidb_vector":
from core.rag.datasource.vdb.tidb_vector.tidb_vector import TiDBVector, TiDBVectorConfig

if self._dataset.index_struct_dict:
class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix.lower()
else:
dataset_id = self._dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
index_struct_dict = {
"type": 'tidb_vector',
"vector_store": {"class_prefix": collection_name}
}
self._dataset.index_struct = json.dumps(index_struct_dict)

return TiDBVector(
collection_name=collection_name,
config=TiDBVectorConfig(
host=config.get('TIDB_VECTOR_HOST'),
port=config.get('TIDB_VECTOR_PORT'),
user=config.get('TIDB_VECTOR_USER'),
password=config.get('TIDB_VECTOR_PASSWORD'),
database=config.get('TIDB_VECTOR_DATABASE'),
),
)
else:
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")
vector_factory_cls = self.get_vector_factory(vector_type)
return vector_factory_cls().init_vector(self._dataset, self._attributes, self._embeddings)

@staticmethod
def get_vector_factory(vector_type: str) -> type[AbstractVectorFactory]:
match vector_type:
case VectorType.MILVUS:
from core.rag.datasource.vdb.milvus.milvus_vector import MilvusVectorFactory
return MilvusVectorFactory
case VectorType.PGVECTOR:
from core.rag.datasource.vdb.pgvector.pgvector import PGVectorFactory
return PGVectorFactory
case VectorType.PGVECTO_RS:
from core.rag.datasource.vdb.pgvecto_rs.pgvecto_rs import PGVectoRSFactory
return PGVectoRSFactory
case VectorType.QDRANT:
from core.rag.datasource.vdb.qdrant.qdrant_vector import QdrantVectorFactory
return QdrantVectorFactory
case VectorType.RELYT:
from core.rag.datasource.vdb.relyt.relyt_vector import RelytVectorFactory
return RelytVectorFactory
case VectorType.TIDB_VECTOR:
from core.rag.datasource.vdb.tidb_vector.tidb_vector import TiDBVectorFactory
return TiDBVectorFactory
case VectorType.WEAVIATE:
from core.rag.datasource.vdb.weaviate.weaviate_vector import WeaviateVectorFactory
return WeaviateVectorFactory
case _:
raise ValueError(f"Vector store {vector_type} is not supported.")


def create(self, texts: list = None, **kwargs): def create(self, texts: list = None, **kwargs):
if texts: if texts:

+ 11
- 0
api/core/rag/datasource/vdb/vector_type.py Целия файл

from enum import Enum


class VectorType(str, Enum):
MILVUS = 'milvus'
PGVECTOR = 'pgvector'
PGVECTO_RS = 'pgvecto-rs'
QDRANT = 'qdrant'
RELYT = 'relyt'
TIDB_VECTOR = 'tidb_vector'
WEAVIATE = 'weaviate'

+ 28
- 1
api/core/rag/datasource/vdb/weaviate/weaviate_vector.py Целия файл

import datetime import datetime
import json
from typing import Any, Optional from typing import Any, Optional


import requests import requests
import weaviate import weaviate
from flask import current_app
from pydantic import BaseModel, root_validator from pydantic import BaseModel, root_validator


from core.rag.datasource.entity.embedding import Embeddings
from core.rag.datasource.vdb.field import Field from core.rag.datasource.vdb.field import Field
from core.rag.datasource.vdb.vector_base import BaseVector from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.models.document import Document from core.rag.models.document import Document
from extensions.ext_redis import redis_client from extensions.ext_redis import redis_client
from models.dataset import Dataset from models.dataset import Dataset
return client return client


def get_type(self) -> str: def get_type(self) -> str:
return 'weaviate'
return VectorType.WEAVIATE


def get_collection_name(self, dataset: Dataset) -> str: def get_collection_name(self, dataset: Dataset) -> str:
if dataset.index_struct_dict: if dataset.index_struct_dict:
if isinstance(value, datetime.datetime): if isinstance(value, datetime.datetime):
return value.isoformat() return value.isoformat()
return value return value


class WeaviateVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> WeaviateVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
dataset.index_struct = json.dumps(
self.gen_index_struct_dict(VectorType.WEAVIATE, collection_name))

return WeaviateVector(
collection_name=collection_name,
config=WeaviateConfig(
endpoint=current_app.config.get('WEAVIATE_ENDPOINT'),
api_key=current_app.config.get('WEAVIATE_API_KEY'),
batch_size=int(current_app.config.get('WEAVIATE_BATCH_SIZE'))
),
attributes=attributes
)

Loading…
Отказ
Запис