| @@ -9,6 +9,7 @@ from werkzeug.exceptions import NotFound | |||
| from constants.languages import languages | |||
| from core.rag.datasource.vdb.vector_factory import Vector | |||
| from core.rag.datasource.vdb.vector_type import VectorType | |||
| from core.rag.models.document import Document | |||
| from extensions.ext_database import db | |||
| from libs.helper import email as email_validate | |||
| @@ -266,15 +267,15 @@ def migrate_knowledge_vector_database(): | |||
| skipped_count = skipped_count + 1 | |||
| continue | |||
| collection_name = '' | |||
| if vector_type == "weaviate": | |||
| if vector_type == VectorType.WEAVIATE: | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| index_struct_dict = { | |||
| "type": 'weaviate', | |||
| "type": VectorType.WEAVIATE, | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| dataset.index_struct = json.dumps(index_struct_dict) | |||
| elif vector_type == "qdrant": | |||
| elif vector_type == VectorType.QDRANT: | |||
| if dataset.collection_binding_id: | |||
| dataset_collection_binding = db.session.query(DatasetCollectionBinding). \ | |||
| filter(DatasetCollectionBinding.id == dataset.collection_binding_id). \ | |||
| @@ -287,20 +288,20 @@ def migrate_knowledge_vector_database(): | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| index_struct_dict = { | |||
| "type": 'qdrant', | |||
| "type": VectorType.QDRANT, | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| dataset.index_struct = json.dumps(index_struct_dict) | |||
| elif vector_type == "milvus": | |||
| elif vector_type == VectorType.MILVUS: | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| index_struct_dict = { | |||
| "type": 'milvus', | |||
| "type": VectorType.MILVUS, | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| dataset.index_struct = json.dumps(index_struct_dict) | |||
| elif vector_type == "relyt": | |||
| elif vector_type == VectorType.RELYT: | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| index_struct_dict = { | |||
| @@ -308,16 +309,16 @@ def migrate_knowledge_vector_database(): | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| dataset.index_struct = json.dumps(index_struct_dict) | |||
| elif vector_type == "pgvector": | |||
| elif vector_type == VectorType.PGVECTOR: | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| index_struct_dict = { | |||
| "type": 'pgvector', | |||
| "type": VectorType.PGVECTOR, | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| dataset.index_struct = json.dumps(index_struct_dict) | |||
| else: | |||
| raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.") | |||
| raise ValueError(f"Vector store {vector_type} is not supported.") | |||
| vector = Vector(dataset) | |||
| click.echo(f"Start to migrate dataset {dataset.id}.") | |||
| @@ -15,6 +15,7 @@ from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError | |||
| from core.indexing_runner import IndexingRunner | |||
| from core.model_runtime.entities.model_entities import ModelType | |||
| from core.provider_manager import ProviderManager | |||
| from core.rag.datasource.vdb.vector_type import VectorType | |||
| from core.rag.extractor.entity.extract_setting import ExtractSetting | |||
| from extensions.ext_database import db | |||
| from fields.app_fields import related_app_list | |||
| @@ -476,20 +477,22 @@ class DatasetRetrievalSettingApi(Resource): | |||
| @account_initialization_required | |||
| def get(self): | |||
| vector_type = current_app.config['VECTOR_STORE'] | |||
| if vector_type in {"milvus", "relyt", "pgvector", "pgvecto_rs", 'tidb_vector'}: | |||
| return { | |||
| 'retrieval_method': [ | |||
| 'semantic_search' | |||
| ] | |||
| } | |||
| elif vector_type in {"qdrant", "weaviate"}: | |||
| return { | |||
| 'retrieval_method': [ | |||
| 'semantic_search', 'full_text_search', 'hybrid_search' | |||
| ] | |||
| } | |||
| else: | |||
| raise ValueError("Unsupported vector db type.") | |||
| match vector_type: | |||
| case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR: | |||
| return { | |||
| 'retrieval_method': [ | |||
| 'semantic_search' | |||
| ] | |||
| } | |||
| case VectorType.QDRANT | VectorType.WEAVIATE: | |||
| return { | |||
| 'retrieval_method': [ | |||
| 'semantic_search', 'full_text_search', 'hybrid_search' | |||
| ] | |||
| } | |||
| case _: | |||
| raise ValueError(f"Unsupported vector db type {vector_type}.") | |||
| class DatasetRetrievalSettingMockApi(Resource): | |||
| @@ -497,20 +500,22 @@ class DatasetRetrievalSettingMockApi(Resource): | |||
| @login_required | |||
| @account_initialization_required | |||
| def get(self, vector_type): | |||
| if vector_type in {'milvus', 'relyt', 'pgvector', 'tidb_vector'}: | |||
| return { | |||
| 'retrieval_method': [ | |||
| 'semantic_search' | |||
| ] | |||
| } | |||
| elif vector_type in {'qdrant', 'weaviate'}: | |||
| return { | |||
| 'retrieval_method': [ | |||
| 'semantic_search', 'full_text_search', 'hybrid_search' | |||
| ] | |||
| } | |||
| else: | |||
| raise ValueError("Unsupported vector db type.") | |||
| match vector_type: | |||
| case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR: | |||
| return { | |||
| 'retrieval_method': [ | |||
| 'semantic_search' | |||
| ] | |||
| } | |||
| case VectorType.QDRANT | VectorType.WEAVIATE: | |||
| return { | |||
| 'retrieval_method': [ | |||
| 'semantic_search', 'full_text_search', 'hybrid_search' | |||
| ] | |||
| } | |||
| case _: | |||
| raise ValueError(f"Unsupported vector db type {vector_type}.") | |||
| class DatasetErrorDocs(Resource): | |||
| @setup_required | |||
| @@ -1,14 +1,20 @@ | |||
| import json | |||
| import logging | |||
| from typing import Any, Optional | |||
| from uuid import uuid4 | |||
| from flask import current_app | |||
| from pydantic import BaseModel, root_validator | |||
| from pymilvus import MilvusClient, MilvusException, connections | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.field import Field | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| from core.rag.datasource.vdb.vector_type import VectorType | |||
| from core.rag.models.document import Document | |||
| from extensions.ext_redis import redis_client | |||
| from models.dataset import Dataset | |||
| logger = logging.getLogger(__name__) | |||
| @@ -55,7 +61,7 @@ class MilvusVector(BaseVector): | |||
| self._fields = [] | |||
| def get_type(self) -> str: | |||
| return 'milvus' | |||
| return VectorType.MILVUS | |||
| def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs): | |||
| index_params = { | |||
| @@ -254,10 +260,36 @@ class MilvusVector(BaseVector): | |||
| schema=schema, index_param=index_params, | |||
| consistency_level=self._consistency_level) | |||
| redis_client.set(collection_exist_cache_key, 1, ex=3600) | |||
| def _init_client(self, config) -> MilvusClient: | |||
| if config.secure: | |||
| uri = "https://" + str(config.host) + ":" + str(config.port) | |||
| else: | |||
| uri = "http://" + str(config.host) + ":" + str(config.port) | |||
| client = MilvusClient(uri=uri, user=config.user, password=config.password,db_name=config.database) | |||
| client = MilvusClient(uri=uri, user=config.user, password=config.password, db_name=config.database) | |||
| return client | |||
| class MilvusVectorFactory(AbstractVectorFactory): | |||
| def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> MilvusVector: | |||
| if dataset.index_struct_dict: | |||
| class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix | |||
| else: | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.WEAVIATE, collection_name)) | |||
| config = current_app.config | |||
| return MilvusVector( | |||
| collection_name=collection_name, | |||
| config=MilvusConfig( | |||
| host=config.get('MILVUS_HOST'), | |||
| port=config.get('MILVUS_PORT'), | |||
| user=config.get('MILVUS_USER'), | |||
| password=config.get('MILVUS_PASSWORD'), | |||
| secure=config.get('MILVUS_SECURE'), | |||
| database=config.get('MILVUS_DATABASE'), | |||
| ) | |||
| ) | |||
| @@ -1,7 +1,9 @@ | |||
| import json | |||
| import logging | |||
| from typing import Any | |||
| from uuid import UUID, uuid4 | |||
| from flask import current_app | |||
| from numpy import ndarray | |||
| from pgvecto_rs.sqlalchemy import Vector | |||
| from pydantic import BaseModel, root_validator | |||
| @@ -10,10 +12,14 @@ from sqlalchemy import text as sql_text | |||
| from sqlalchemy.dialects import postgresql | |||
| from sqlalchemy.orm import Mapped, Session, mapped_column | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.pgvecto_rs.collection import CollectionORM | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| from core.rag.datasource.vdb.vector_type import VectorType | |||
| from core.rag.models.document import Document | |||
| from extensions.ext_redis import redis_client | |||
| from models.dataset import Dataset | |||
| logger = logging.getLogger(__name__) | |||
| @@ -67,7 +73,7 @@ class PGVectoRS(BaseVector): | |||
| self._distance_op = "<=>" | |||
| def get_type(self) -> str: | |||
| return 'pgvecto-rs' | |||
| return VectorType.PGVECTO_RS | |||
| def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs): | |||
| self.create_collection(len(embeddings[0])) | |||
| @@ -222,3 +228,28 @@ class PGVectoRS(BaseVector): | |||
| # docs.append(doc) | |||
| # return docs | |||
| return [] | |||
| class PGVectoRSFactory(AbstractVectorFactory): | |||
| def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> PGVectoRS: | |||
| if dataset.index_struct_dict: | |||
| class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix.lower() | |||
| else: | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower() | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.WEAVIATE, collection_name)) | |||
| dim = len(embeddings.embed_query("pgvecto_rs")) | |||
| config = current_app.config | |||
| return PGVectoRS( | |||
| collection_name=collection_name, | |||
| config=PgvectoRSConfig( | |||
| host=config.get('PGVECTO_RS_HOST'), | |||
| port=config.get('PGVECTO_RS_PORT'), | |||
| user=config.get('PGVECTO_RS_USER'), | |||
| password=config.get('PGVECTO_RS_PASSWORD'), | |||
| database=config.get('PGVECTO_RS_DATABASE'), | |||
| ), | |||
| dim=dim | |||
| ) | |||
| @@ -5,11 +5,16 @@ from typing import Any | |||
| import psycopg2.extras | |||
| import psycopg2.pool | |||
| from flask import current_app | |||
| from pydantic import BaseModel, root_validator | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| from core.rag.datasource.vdb.vector_type import VectorType | |||
| from core.rag.models.document import Document | |||
| from extensions.ext_redis import redis_client | |||
| from models.dataset import Dataset | |||
| class PGVectorConfig(BaseModel): | |||
| @@ -51,7 +56,7 @@ class PGVector(BaseVector): | |||
| self.table_name = f"embedding_{collection_name}" | |||
| def get_type(self) -> str: | |||
| return "pgvector" | |||
| return VectorType.PGVECTOR | |||
| def _create_connection_pool(self, config: PGVectorConfig): | |||
| return psycopg2.pool.SimpleConnectionPool( | |||
| @@ -167,3 +172,27 @@ class PGVector(BaseVector): | |||
| cur.execute(SQL_CREATE_TABLE.format(table_name=self.table_name, dimension=dimension)) | |||
| # TODO: create index https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing | |||
| redis_client.set(collection_exist_cache_key, 1, ex=3600) | |||
| class PGVectorFactory(AbstractVectorFactory): | |||
| def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> PGVector: | |||
| if dataset.index_struct_dict: | |||
| class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"] | |||
| collection_name = class_prefix | |||
| else: | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.PGVECTOR, collection_name)) | |||
| config = current_app.config | |||
| return PGVector( | |||
| collection_name=collection_name, | |||
| config=PGVectorConfig( | |||
| host=config.get("PGVECTOR_HOST"), | |||
| port=config.get("PGVECTOR_PORT"), | |||
| user=config.get("PGVECTOR_USER"), | |||
| password=config.get("PGVECTOR_PASSWORD"), | |||
| database=config.get("PGVECTOR_DATABASE"), | |||
| ), | |||
| ) | |||
| @@ -1,3 +1,4 @@ | |||
| import json | |||
| import os | |||
| import uuid | |||
| from collections.abc import Generator, Iterable, Sequence | |||
| @@ -5,6 +6,7 @@ from itertools import islice | |||
| from typing import TYPE_CHECKING, Any, Optional, Union, cast | |||
| import qdrant_client | |||
| from flask import current_app | |||
| from pydantic import BaseModel | |||
| from qdrant_client.http import models as rest | |||
| from qdrant_client.http.models import ( | |||
| @@ -17,10 +19,15 @@ from qdrant_client.http.models import ( | |||
| ) | |||
| from qdrant_client.local.qdrant_local import QdrantLocal | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.field import Field | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| from core.rag.datasource.vdb.vector_type import VectorType | |||
| from core.rag.models.document import Document | |||
| from extensions.ext_database import db | |||
| from extensions.ext_redis import redis_client | |||
| from models.dataset import Dataset, DatasetCollectionBinding | |||
| if TYPE_CHECKING: | |||
| from qdrant_client import grpc # noqa | |||
| @@ -69,7 +76,7 @@ class QdrantVector(BaseVector): | |||
| self._group_id = group_id | |||
| def get_type(self) -> str: | |||
| return 'qdrant' | |||
| return VectorType.QDRANT | |||
| def to_index_struct(self) -> dict: | |||
| return { | |||
| @@ -408,3 +415,40 @@ class QdrantVector(BaseVector): | |||
| page_content=scored_point.payload.get(content_payload_key), | |||
| metadata=scored_point.payload.get(metadata_payload_key) or {}, | |||
| ) | |||
| class QdrantVectorFactory(AbstractVectorFactory): | |||
| def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> QdrantVector: | |||
| if dataset.collection_binding_id: | |||
| dataset_collection_binding = db.session.query(DatasetCollectionBinding). \ | |||
| filter(DatasetCollectionBinding.id == dataset.collection_binding_id). \ | |||
| one_or_none() | |||
| if dataset_collection_binding: | |||
| collection_name = dataset_collection_binding.collection_name | |||
| else: | |||
| raise ValueError('Dataset Collection Bindings is not exist!') | |||
| else: | |||
| if dataset.index_struct_dict: | |||
| class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix | |||
| else: | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| if not dataset.index_struct_dict: | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.QDRANT, collection_name)) | |||
| config = current_app.config | |||
| return QdrantVector( | |||
| collection_name=collection_name, | |||
| group_id=dataset.id, | |||
| config=QdrantConfig( | |||
| endpoint=config.get('QDRANT_URL'), | |||
| api_key=config.get('QDRANT_API_KEY'), | |||
| root_path=config.root_path, | |||
| timeout=config.get('QDRANT_CLIENT_TIMEOUT'), | |||
| grpc_port=config.get('QDRANT_GRPC_PORT'), | |||
| prefer_grpc=config.get('QDRANT_GRPC_ENABLED') | |||
| ) | |||
| ) | |||
| @@ -1,12 +1,19 @@ | |||
| import json | |||
| import uuid | |||
| from typing import Any, Optional | |||
| from flask import current_app | |||
| from pydantic import BaseModel, root_validator | |||
| from sqlalchemy import Column, Sequence, String, Table, create_engine, insert | |||
| from sqlalchemy import text as sql_text | |||
| from sqlalchemy.dialects.postgresql import JSON, TEXT | |||
| from sqlalchemy.orm import Session | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| from core.rag.datasource.vdb.vector_type import VectorType | |||
| from models.dataset import Dataset | |||
| try: | |||
| from sqlalchemy.orm import declarative_base | |||
| except ImportError: | |||
| @@ -53,7 +60,7 @@ class RelytVector(BaseVector): | |||
| self._group_id = group_id | |||
| def get_type(self) -> str: | |||
| return 'relyt' | |||
| return VectorType.RELYT | |||
| def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs): | |||
| index_params = {} | |||
| @@ -240,10 +247,10 @@ class RelytVector(BaseVector): | |||
| return docs | |||
| def similarity_search_with_score_by_vector( | |||
| self, | |||
| embedding: list[float], | |||
| k: int = 4, | |||
| filter: Optional[dict] = None, | |||
| self, | |||
| embedding: list[float], | |||
| k: int = 4, | |||
| filter: Optional[dict] = None, | |||
| ) -> list[tuple[Document, float]]: | |||
| # Add the filter if provided | |||
| try: | |||
| @@ -298,3 +305,28 @@ class RelytVector(BaseVector): | |||
| def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]: | |||
| # milvus/zilliz/relyt doesn't support bm25 search | |||
| return [] | |||
| class RelytVectorFactory(AbstractVectorFactory): | |||
| def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> RelytVector: | |||
| if dataset.index_struct_dict: | |||
| class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix | |||
| else: | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.RELYT, collection_name)) | |||
| config = current_app.config | |||
| return RelytVector( | |||
| collection_name=collection_name, | |||
| config=RelytConfig( | |||
| host=config.get('RELYT_HOST'), | |||
| port=config.get('RELYT_PORT'), | |||
| user=config.get('RELYT_USER'), | |||
| password=config.get('RELYT_PASSWORD'), | |||
| database=config.get('RELYT_DATABASE'), | |||
| ), | |||
| group_id=dataset.id | |||
| ) | |||
| @@ -3,14 +3,19 @@ import logging | |||
| from typing import Any | |||
| import sqlalchemy | |||
| from flask import current_app | |||
| from pydantic import BaseModel, root_validator | |||
| from sqlalchemy import JSON, TEXT, Column, DateTime, String, Table, create_engine, insert | |||
| from sqlalchemy import text as sql_text | |||
| from sqlalchemy.orm import Session, declarative_base | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| from core.rag.datasource.vdb.vector_type import VectorType | |||
| from core.rag.models.document import Document | |||
| from extensions.ext_redis import redis_client | |||
| from models.dataset import Dataset | |||
| logger = logging.getLogger(__name__) | |||
| @@ -39,6 +44,9 @@ class TiDBVectorConfig(BaseModel): | |||
| class TiDBVector(BaseVector): | |||
| def get_type(self) -> str: | |||
| return VectorType.TIDB_VECTOR | |||
| def _table(self, dim: int) -> Table: | |||
| from tidb_vector.sqlalchemy import VectorType | |||
| return Table( | |||
| @@ -214,3 +222,28 @@ class TiDBVector(BaseVector): | |||
| with Session(self._engine) as session: | |||
| session.execute(sql_text(f"""DROP TABLE IF EXISTS {self._collection_name};""")) | |||
| session.commit() | |||
| class TiDBVectorFactory(AbstractVectorFactory): | |||
| def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> TiDBVector: | |||
| if dataset.index_struct_dict: | |||
| class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix.lower() | |||
| else: | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower() | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.TIDB_VECTOR, collection_name)) | |||
| config = current_app.config | |||
| return TiDBVector( | |||
| collection_name=collection_name, | |||
| config=TiDBVectorConfig( | |||
| host=config.get('TIDB_VECTOR_HOST'), | |||
| port=config.get('TIDB_VECTOR_PORT'), | |||
| user=config.get('TIDB_VECTOR_USER'), | |||
| password=config.get('TIDB_VECTOR_PASSWORD'), | |||
| database=config.get('TIDB_VECTOR_DATABASE'), | |||
| ), | |||
| ) | |||
| @@ -11,6 +11,10 @@ class BaseVector(ABC): | |||
| def __init__(self, collection_name: str): | |||
| self._collection_name = collection_name | |||
| @abstractmethod | |||
| def get_type(self) -> str: | |||
| raise NotImplementedError | |||
| @abstractmethod | |||
| def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs): | |||
| raise NotImplementedError | |||
| @@ -1,4 +1,4 @@ | |||
| import json | |||
| from abc import ABC, abstractmethod | |||
| from typing import Any | |||
| from flask import current_app | |||
| @@ -8,9 +8,23 @@ from core.model_manager import ModelManager | |||
| from core.model_runtime.entities.model_entities import ModelType | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_type import VectorType | |||
| from core.rag.models.document import Document | |||
| from extensions.ext_database import db | |||
| from models.dataset import Dataset, DatasetCollectionBinding | |||
| from models.dataset import Dataset | |||
| class AbstractVectorFactory(ABC): | |||
| @abstractmethod | |||
| def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> BaseVector: | |||
| raise NotImplementedError | |||
| @staticmethod | |||
| def gen_index_struct_dict(vector_type: VectorType, collection_name: str) -> dict: | |||
| index_struct_dict = { | |||
| "type": vector_type, | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| return index_struct_dict | |||
| class Vector: | |||
| @@ -32,188 +46,35 @@ class Vector: | |||
| if not vector_type: | |||
| raise ValueError("Vector store must be specified.") | |||
| if vector_type == "weaviate": | |||
| from core.rag.datasource.vdb.weaviate.weaviate_vector import WeaviateConfig, WeaviateVector | |||
| if self._dataset.index_struct_dict: | |||
| class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix | |||
| else: | |||
| dataset_id = self._dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| index_struct_dict = { | |||
| "type": 'weaviate', | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| self._dataset.index_struct = json.dumps(index_struct_dict) | |||
| return WeaviateVector( | |||
| collection_name=collection_name, | |||
| config=WeaviateConfig( | |||
| endpoint=config.get('WEAVIATE_ENDPOINT'), | |||
| api_key=config.get('WEAVIATE_API_KEY'), | |||
| batch_size=int(config.get('WEAVIATE_BATCH_SIZE')) | |||
| ), | |||
| attributes=self._attributes | |||
| ) | |||
| elif vector_type == "qdrant": | |||
| from core.rag.datasource.vdb.qdrant.qdrant_vector import QdrantConfig, QdrantVector | |||
| if self._dataset.collection_binding_id: | |||
| dataset_collection_binding = db.session.query(DatasetCollectionBinding). \ | |||
| filter(DatasetCollectionBinding.id == self._dataset.collection_binding_id). \ | |||
| one_or_none() | |||
| if dataset_collection_binding: | |||
| collection_name = dataset_collection_binding.collection_name | |||
| else: | |||
| raise ValueError('Dataset Collection Bindings is not exist!') | |||
| else: | |||
| if self._dataset.index_struct_dict: | |||
| class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix | |||
| else: | |||
| dataset_id = self._dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| if not self._dataset.index_struct_dict: | |||
| index_struct_dict = { | |||
| "type": 'qdrant', | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| self._dataset.index_struct = json.dumps(index_struct_dict) | |||
| return QdrantVector( | |||
| collection_name=collection_name, | |||
| group_id=self._dataset.id, | |||
| config=QdrantConfig( | |||
| endpoint=config.get('QDRANT_URL'), | |||
| api_key=config.get('QDRANT_API_KEY'), | |||
| root_path=current_app.root_path, | |||
| timeout=config.get('QDRANT_CLIENT_TIMEOUT'), | |||
| grpc_port=config.get('QDRANT_GRPC_PORT'), | |||
| prefer_grpc=config.get('QDRANT_GRPC_ENABLED') | |||
| ) | |||
| ) | |||
| elif vector_type == "milvus": | |||
| from core.rag.datasource.vdb.milvus.milvus_vector import MilvusConfig, MilvusVector | |||
| if self._dataset.index_struct_dict: | |||
| class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix | |||
| else: | |||
| dataset_id = self._dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| index_struct_dict = { | |||
| "type": 'milvus', | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| self._dataset.index_struct = json.dumps(index_struct_dict) | |||
| return MilvusVector( | |||
| collection_name=collection_name, | |||
| config=MilvusConfig( | |||
| host=config.get('MILVUS_HOST'), | |||
| port=config.get('MILVUS_PORT'), | |||
| user=config.get('MILVUS_USER'), | |||
| password=config.get('MILVUS_PASSWORD'), | |||
| secure=config.get('MILVUS_SECURE'), | |||
| database=config.get('MILVUS_DATABASE'), | |||
| ) | |||
| ) | |||
| elif vector_type == "relyt": | |||
| from core.rag.datasource.vdb.relyt.relyt_vector import RelytConfig, RelytVector | |||
| if self._dataset.index_struct_dict: | |||
| class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix | |||
| else: | |||
| dataset_id = self._dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| index_struct_dict = { | |||
| "type": 'relyt', | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| self._dataset.index_struct = json.dumps(index_struct_dict) | |||
| return RelytVector( | |||
| collection_name=collection_name, | |||
| config=RelytConfig( | |||
| host=config.get('RELYT_HOST'), | |||
| port=config.get('RELYT_PORT'), | |||
| user=config.get('RELYT_USER'), | |||
| password=config.get('RELYT_PASSWORD'), | |||
| database=config.get('RELYT_DATABASE'), | |||
| ), | |||
| group_id=self._dataset.id | |||
| ) | |||
| elif vector_type == "pgvecto_rs": | |||
| from core.rag.datasource.vdb.pgvecto_rs.pgvecto_rs import PGVectoRS, PgvectoRSConfig | |||
| if self._dataset.index_struct_dict: | |||
| class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix.lower() | |||
| else: | |||
| dataset_id = self._dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower() | |||
| index_struct_dict = { | |||
| "type": 'pgvecto_rs', | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| self._dataset.index_struct = json.dumps(index_struct_dict) | |||
| dim = len(self._embeddings.embed_query("pgvecto_rs")) | |||
| return PGVectoRS( | |||
| collection_name=collection_name, | |||
| config=PgvectoRSConfig( | |||
| host=config.get('PGVECTO_RS_HOST'), | |||
| port=config.get('PGVECTO_RS_PORT'), | |||
| user=config.get('PGVECTO_RS_USER'), | |||
| password=config.get('PGVECTO_RS_PASSWORD'), | |||
| database=config.get('PGVECTO_RS_DATABASE'), | |||
| ), | |||
| dim=dim | |||
| ) | |||
| elif vector_type == "pgvector": | |||
| from core.rag.datasource.vdb.pgvector.pgvector import PGVector, PGVectorConfig | |||
| if self._dataset.index_struct_dict: | |||
| class_prefix: str = self._dataset.index_struct_dict["vector_store"]["class_prefix"] | |||
| collection_name = class_prefix | |||
| else: | |||
| dataset_id = self._dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| index_struct_dict = { | |||
| "type": "pgvector", | |||
| "vector_store": {"class_prefix": collection_name}} | |||
| self._dataset.index_struct = json.dumps(index_struct_dict) | |||
| return PGVector( | |||
| collection_name=collection_name, | |||
| config=PGVectorConfig( | |||
| host=config.get("PGVECTOR_HOST"), | |||
| port=config.get("PGVECTOR_PORT"), | |||
| user=config.get("PGVECTOR_USER"), | |||
| password=config.get("PGVECTOR_PASSWORD"), | |||
| database=config.get("PGVECTOR_DATABASE"), | |||
| ), | |||
| ) | |||
| elif vector_type == "tidb_vector": | |||
| from core.rag.datasource.vdb.tidb_vector.tidb_vector import TiDBVector, TiDBVectorConfig | |||
| if self._dataset.index_struct_dict: | |||
| class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix.lower() | |||
| else: | |||
| dataset_id = self._dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower() | |||
| index_struct_dict = { | |||
| "type": 'tidb_vector', | |||
| "vector_store": {"class_prefix": collection_name} | |||
| } | |||
| self._dataset.index_struct = json.dumps(index_struct_dict) | |||
| return TiDBVector( | |||
| collection_name=collection_name, | |||
| config=TiDBVectorConfig( | |||
| host=config.get('TIDB_VECTOR_HOST'), | |||
| port=config.get('TIDB_VECTOR_PORT'), | |||
| user=config.get('TIDB_VECTOR_USER'), | |||
| password=config.get('TIDB_VECTOR_PASSWORD'), | |||
| database=config.get('TIDB_VECTOR_DATABASE'), | |||
| ), | |||
| ) | |||
| else: | |||
| raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.") | |||
| vector_factory_cls = self.get_vector_factory(vector_type) | |||
| return vector_factory_cls().init_vector(self._dataset, self._attributes, self._embeddings) | |||
| @staticmethod | |||
| def get_vector_factory(vector_type: str) -> type[AbstractVectorFactory]: | |||
| match vector_type: | |||
| case VectorType.MILVUS: | |||
| from core.rag.datasource.vdb.milvus.milvus_vector import MilvusVectorFactory | |||
| return MilvusVectorFactory | |||
| case VectorType.PGVECTOR: | |||
| from core.rag.datasource.vdb.pgvector.pgvector import PGVectorFactory | |||
| return PGVectorFactory | |||
| case VectorType.PGVECTO_RS: | |||
| from core.rag.datasource.vdb.pgvecto_rs.pgvecto_rs import PGVectoRSFactory | |||
| return PGVectoRSFactory | |||
| case VectorType.QDRANT: | |||
| from core.rag.datasource.vdb.qdrant.qdrant_vector import QdrantVectorFactory | |||
| return QdrantVectorFactory | |||
| case VectorType.RELYT: | |||
| from core.rag.datasource.vdb.relyt.relyt_vector import RelytVectorFactory | |||
| return RelytVectorFactory | |||
| case VectorType.TIDB_VECTOR: | |||
| from core.rag.datasource.vdb.tidb_vector.tidb_vector import TiDBVectorFactory | |||
| return TiDBVectorFactory | |||
| case VectorType.WEAVIATE: | |||
| from core.rag.datasource.vdb.weaviate.weaviate_vector import WeaviateVectorFactory | |||
| return WeaviateVectorFactory | |||
| case _: | |||
| raise ValueError(f"Vector store {vector_type} is not supported.") | |||
| def create(self, texts: list = None, **kwargs): | |||
| if texts: | |||
| @@ -0,0 +1,11 @@ | |||
| from enum import Enum | |||
| class VectorType(str, Enum): | |||
| MILVUS = 'milvus' | |||
| PGVECTOR = 'pgvector' | |||
| PGVECTO_RS = 'pgvecto-rs' | |||
| QDRANT = 'qdrant' | |||
| RELYT = 'relyt' | |||
| TIDB_VECTOR = 'tidb_vector' | |||
| WEAVIATE = 'weaviate' | |||
| @@ -1,12 +1,17 @@ | |||
| import datetime | |||
| import json | |||
| from typing import Any, Optional | |||
| import requests | |||
| import weaviate | |||
| from flask import current_app | |||
| from pydantic import BaseModel, root_validator | |||
| from core.rag.datasource.entity.embedding import Embeddings | |||
| from core.rag.datasource.vdb.field import Field | |||
| from core.rag.datasource.vdb.vector_base import BaseVector | |||
| from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory | |||
| from core.rag.datasource.vdb.vector_type import VectorType | |||
| from core.rag.models.document import Document | |||
| from extensions.ext_redis import redis_client | |||
| from models.dataset import Dataset | |||
| @@ -59,7 +64,7 @@ class WeaviateVector(BaseVector): | |||
| return client | |||
| def get_type(self) -> str: | |||
| return 'weaviate' | |||
| return VectorType.WEAVIATE | |||
| def get_collection_name(self, dataset: Dataset) -> str: | |||
| if dataset.index_struct_dict: | |||
| @@ -255,3 +260,25 @@ class WeaviateVector(BaseVector): | |||
| if isinstance(value, datetime.datetime): | |||
| return value.isoformat() | |||
| return value | |||
| class WeaviateVectorFactory(AbstractVectorFactory): | |||
| def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> WeaviateVector: | |||
| if dataset.index_struct_dict: | |||
| class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix'] | |||
| collection_name = class_prefix | |||
| else: | |||
| dataset_id = dataset.id | |||
| collection_name = Dataset.gen_collection_name_by_id(dataset_id) | |||
| dataset.index_struct = json.dumps( | |||
| self.gen_index_struct_dict(VectorType.WEAVIATE, collection_name)) | |||
| return WeaviateVector( | |||
| collection_name=collection_name, | |||
| config=WeaviateConfig( | |||
| endpoint=current_app.config.get('WEAVIATE_ENDPOINT'), | |||
| api_key=current_app.config.get('WEAVIATE_API_KEY'), | |||
| batch_size=int(current_app.config.get('WEAVIATE_BATCH_SIZE')) | |||
| ), | |||
| attributes=attributes | |||
| ) | |||