Parcourir la source

feat: api_key support for xinference (#6417)

Signed-off-by: themanforfree <themanforfree@gmail.com>
tags/0.6.15
themanforfree il y a 1 an
Parent
révision
ba181197c2
Aucun compte lié à l'adresse e-mail de l'auteur

+ 3
- 1
api/core/model_runtime/model_providers/xinference/llm/llm.py Voir le fichier

@@ -453,9 +453,11 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
if credentials['server_url'].endswith('/'):
credentials['server_url'] = credentials['server_url'][:-1]

api_key = credentials.get('api_key') or "abc"

client = OpenAI(
base_url=f'{credentials["server_url"]}/v1',
api_key='abc',
api_key=api_key,
max_retries=3,
timeout=60,
)

+ 18
- 10
api/core/model_runtime/model_providers/xinference/rerank/rerank.py Voir le fichier

@@ -44,15 +44,23 @@ class XinferenceRerankModel(RerankModel):
docs=[]
)

if credentials['server_url'].endswith('/'):
credentials['server_url'] = credentials['server_url'][:-1]

handle = RESTfulRerankModelHandle(credentials['model_uid'], credentials['server_url'],auth_headers={})
response = handle.rerank(
documents=docs,
query=query,
top_n=top_n,
)
server_url = credentials['server_url']
model_uid = credentials['model_uid']
api_key = credentials.get('api_key')
if server_url.endswith('/'):
server_url = server_url[:-1]
auth_headers = {'Authorization': f'Bearer {api_key}'} if api_key else {}

try:
handle = RESTfulRerankModelHandle(model_uid, server_url, auth_headers)
response = handle.rerank(
documents=docs,
query=query,
top_n=top_n,
)
except RuntimeError as e:
raise InvokeServerUnavailableError(str(e))


rerank_documents = []
for idx, result in enumerate(response['results']):
@@ -102,7 +110,7 @@ class XinferenceRerankModel(RerankModel):
if not isinstance(xinference_client, RESTfulRerankModelHandle):
raise InvokeBadRequestError(
'please check model type, the model you want to invoke is not a rerank model')
self.invoke(
model=model,
credentials=credentials,

+ 21
- 14
api/core/model_runtime/model_providers/xinference/speech2text/speech2text.py Voir le fichier

@@ -99,9 +99,9 @@ class XinferenceSpeech2TextModel(Speech2TextModel):
}

def _speech2text_invoke(
self,
model: str,
credentials: dict,
self,
model: str,
credentials: dict,
file: IO[bytes],
language: Optional[str] = None,
prompt: Optional[str] = None,
@@ -121,17 +121,24 @@ class XinferenceSpeech2TextModel(Speech2TextModel):
:param temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output mor e random,while lower values like 0.2 will make it more focused and deterministic.If set to 0, the model wi ll use log probability to automatically increase the temperature until certain thresholds are hit.
:return: text for given audio file
"""
if credentials['server_url'].endswith('/'):
credentials['server_url'] = credentials['server_url'][:-1]

handle = RESTfulAudioModelHandle(credentials['model_uid'],credentials['server_url'],auth_headers={})
response = handle.transcriptions(
audio=file,
language = language,
prompt = prompt,
response_format = response_format,
temperature = temperature
)
server_url = credentials['server_url']
model_uid = credentials['model_uid']
api_key = credentials.get('api_key')
if server_url.endswith('/'):
server_url = server_url[:-1]
auth_headers = {'Authorization': f'Bearer {api_key}'} if api_key else {}

try:
handle = RESTfulAudioModelHandle(model_uid, server_url, auth_headers)
response = handle.transcriptions(
audio=file,
language=language,
prompt=prompt,
response_format=response_format,
temperature=temperature
)
except RuntimeError as e:
raise InvokeServerUnavailableError(str(e))

return response["text"]


+ 9
- 8
api/core/model_runtime/model_providers/xinference/text_embedding/text_embedding.py Voir le fichier

@@ -43,16 +43,17 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
"""
server_url = credentials['server_url']
model_uid = credentials['model_uid']
api_key = credentials.get('api_key')
if server_url.endswith('/'):
server_url = server_url[:-1]
auth_headers = {'Authorization': f'Bearer {api_key}'} if api_key else {}

try:
handle = RESTfulEmbeddingModelHandle(model_uid, server_url, auth_headers={})
handle = RESTfulEmbeddingModelHandle(model_uid, server_url, auth_headers)
embeddings = handle.create_embedding(input=texts)
except RuntimeError as e:
raise InvokeServerUnavailableError(e)
raise InvokeServerUnavailableError(str(e))
"""
for convenience, the response json is like:
class Embedding(TypedDict):
@@ -106,7 +107,7 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
try:
if "/" in credentials['model_uid'] or "?" in credentials['model_uid'] or "#" in credentials['model_uid']:
raise CredentialsValidateFailedError("model_uid should not contain /, ?, or #")
server_url = credentials['server_url']
model_uid = credentials['model_uid']
extra_args = XinferenceHelper.get_xinference_extra_parameter(server_url=server_url, model_uid=model_uid)
@@ -117,7 +118,7 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
server_url = server_url[:-1]

client = Client(base_url=server_url)
try:
handle = client.get_model(model_uid=model_uid)
except RuntimeError as e:
@@ -151,7 +152,7 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
KeyError
]
}
def _calc_response_usage(self, model: str, credentials: dict, tokens: int) -> EmbeddingUsage:
"""
Calculate response usage
@@ -186,7 +187,7 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
"""
used to define customizable model schema
"""
entity = AIModelEntity(
model=model,
label=I18nObject(

+ 9
- 0
api/core/model_runtime/model_providers/xinference/xinference.yaml Voir le fichier

@@ -46,3 +46,12 @@ model_credential_schema:
placeholder:
zh_Hans: 在此输入您的Model UID
en_US: Enter the model uid
- variable: api_key
label:
zh_Hans: API密钥
en_US: API key
type: text-input
required: false
placeholder:
zh_Hans: 在此输入您的API密钥
en_US: Enter the api key

Chargement…
Annuler
Enregistrer