Parcourir la source

feat: optimize hf inference endpoint (#975)

tags/0.3.16
takatost il y a 2 ans
Parent
révision
a76fde3d23
Aucun compte lié à l'adresse e-mail de l'auteur

+ 5
- 7
api/core/model_providers/models/llm/huggingface_hub_model.py Voir le fichier

@@ -1,16 +1,14 @@
import decimal
from functools import wraps
from typing import List, Optional, Any

from langchain import HuggingFaceHub
from langchain.callbacks.manager import Callbacks
from langchain.llms import HuggingFaceEndpoint
from langchain.schema import LLMResult

from core.model_providers.error import LLMBadRequestError
from core.model_providers.models.llm.base import BaseLLM
from core.model_providers.models.entity.message import PromptMessage, MessageType
from core.model_providers.models.entity.message import PromptMessage
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
from core.third_party.langchain.llms.huggingface_endpoint_llm import HuggingFaceEndpointLLM


class HuggingfaceHubModel(BaseLLM):
@@ -19,12 +17,12 @@ class HuggingfaceHubModel(BaseLLM):
def _init_client(self) -> Any:
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
if self.credentials['huggingfacehub_api_type'] == 'inference_endpoints':
client = HuggingFaceEndpoint(
client = HuggingFaceEndpointLLM(
endpoint_url=self.credentials['huggingfacehub_endpoint_url'],
task='text2text-generation',
task=self.credentials['task_type'],
model_kwargs=provider_model_kwargs,
huggingfacehub_api_token=self.credentials['huggingfacehub_api_token'],
callbacks=self.callbacks,
callbacks=self.callbacks
)
else:
client = HuggingFaceHub(

+ 13
- 3
api/core/model_providers/providers/huggingface_hub_provider.py Voir le fichier

@@ -2,7 +2,6 @@ import json
from typing import Type

from huggingface_hub import HfApi
from langchain.llms import HuggingFaceEndpoint

from core.helper import encrypter
from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType
@@ -10,6 +9,7 @@ from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHub
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError

from core.model_providers.models.base import BaseProviderModel
from core.third_party.langchain.llms.huggingface_endpoint_llm import HuggingFaceEndpointLLM
from models.provider import ProviderType


@@ -85,10 +85,16 @@ class HuggingfaceHubProvider(BaseModelProvider):
if 'huggingfacehub_endpoint_url' not in credentials:
raise CredentialsValidateFailedError('Hugging Face Hub Endpoint URL must be provided.')

if 'task_type' not in credentials:
raise CredentialsValidateFailedError('Task Type must be provided.')

if credentials['task_type'] not in ("text2text-generation", "text-generation", "summarization"):
raise CredentialsValidateFailedError('Task Type must be one of text2text-generation, text-generation, summarization.')

try:
llm = HuggingFaceEndpoint(
llm = HuggingFaceEndpointLLM(
endpoint_url=credentials['huggingfacehub_endpoint_url'],
task="text2text-generation",
task=credentials['task_type'],
model_kwargs={"temperature": 0.5, "max_new_tokens": 200},
huggingfacehub_api_token=credentials['huggingfacehub_api_token']
)
@@ -160,6 +166,10 @@ class HuggingfaceHubProvider(BaseModelProvider):
}

credentials = json.loads(provider_model.encrypted_config)

if 'task_type' not in credentials:
credentials['task_type'] = 'text-generation'

if credentials['huggingfacehub_api_token']:
credentials['huggingfacehub_api_token'] = encrypter.decrypt_token(
self.provider.tenant_id,

+ 39
- 0
api/core/third_party/langchain/llms/huggingface_endpoint_llm.py Voir le fichier

@@ -0,0 +1,39 @@
from typing import Dict

from langchain.llms import HuggingFaceEndpoint
from pydantic import Extra, root_validator

from langchain.utils import get_from_dict_or_env


class HuggingFaceEndpointLLM(HuggingFaceEndpoint):
"""HuggingFace Endpoint models.

To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.

Only supports `text-generation` and `text2text-generation` for now.

Example:
.. code-block:: python

from langchain.llms import HuggingFaceEndpoint
endpoint_url = (
"https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud"
)
hf = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
huggingfacehub_api_token="my-api-key"
)
"""

@root_validator(allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingfacehub_api_token = get_from_dict_or_env(
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
)

values["huggingfacehub_api_token"] = huggingfacehub_api_token
return values

+ 2
- 1
api/tests/unit_tests/model_providers/test_huggingface_hub_provider.py Voir le fichier

@@ -17,7 +17,8 @@ HOSTED_INFERENCE_API_VALIDATE_CREDENTIAL = {
INFERENCE_ENDPOINTS_VALIDATE_CREDENTIAL = {
'huggingfacehub_api_type': 'inference_endpoints',
'huggingfacehub_api_token': 'valid_key',
'huggingfacehub_endpoint_url': 'valid_url'
'huggingfacehub_endpoint_url': 'valid_url',
'task_type': 'text-generation'
}

def encrypt_side_effect(tenant_id, encrypt_key):

Chargement…
Annuler
Enregistrer