Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com> Co-authored-by: crazywoola <427733928@qq.com>tags/0.5.11
| @@ -17,9 +17,11 @@ class BedrockProvider(ModelProvider): | |||
| """ | |||
| try: | |||
| model_instance = self.get_model_instance(ModelType.LLM) | |||
| bedrock_validate_model_name = credentials.get('model_for_validation', 'amazon.titan-text-lite-v1') | |||
| # Use `amazon.titan-text-lite-v1` model by default for validating credentials | |||
| model_for_validation = credentials.get('model_for_validation', 'amazon.titan-text-lite-v1') | |||
| model_instance.validate_credentials( | |||
| model=bedrock_validate_model_name, | |||
| model=model_for_validation, | |||
| credentials=credentials | |||
| ) | |||
| except CredentialsValidateFailedError as ex: | |||
| @@ -74,7 +74,7 @@ provider_credential_schema: | |||
| label: | |||
| en_US: Available Model Name | |||
| zh_Hans: 可用模型名称 | |||
| type: text-input | |||
| type: secret-input | |||
| placeholder: | |||
| en_US: A model you have access to (e.g. amazon.titan-text-lite-v1) for validation. | |||
| zh_Hans: 为了进行验证,请输入一个您可用的模型名称 (例如:amazon.titan-text-lite-v1) | |||
| @@ -1,33 +1,50 @@ | |||
| model: anthropic.claude-instant-v1 | |||
| label: | |||
| en_US: Claude Instant V1 | |||
| en_US: Claude Instant 1 | |||
| model_type: llm | |||
| model_properties: | |||
| mode: chat | |||
| context_size: 100000 | |||
| parameter_rules: | |||
| - name: max_tokens | |||
| use_template: max_tokens | |||
| required: true | |||
| type: int | |||
| default: 4096 | |||
| min: 1 | |||
| max: 4096 | |||
| help: | |||
| zh_Hans: 停止前生成的最大令牌数。请注意,Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。 | |||
| en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter. | |||
| - name: temperature | |||
| use_template: temperature | |||
| - name: topP | |||
| use_template: top_p | |||
| - name: topK | |||
| label: | |||
| zh_Hans: 取样数量 | |||
| en_US: Top K | |||
| type: int | |||
| required: false | |||
| type: float | |||
| default: 1 | |||
| min: 0.0 | |||
| max: 1.0 | |||
| help: | |||
| zh_Hans: 仅从每个后续标记的前 K 个选项中采样。 | |||
| en_US: Only sample from the top K options for each subsequent token. | |||
| zh_Hans: 生成内容的随机性。 | |||
| en_US: The amount of randomness injected into the response. | |||
| - name: top_p | |||
| required: false | |||
| default: 250 | |||
| type: float | |||
| default: 0.999 | |||
| min: 0.000 | |||
| max: 1.000 | |||
| help: | |||
| zh_Hans: 在核采样中,Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p,但不能同时更改两者。 | |||
| en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both. | |||
| - name: top_k | |||
| required: false | |||
| type: int | |||
| default: 0 | |||
| min: 0 | |||
| # tip docs from aws has error, max value is 500 | |||
| max: 500 | |||
| - name: max_tokens_to_sample | |||
| use_template: max_tokens | |||
| required: true | |||
| default: 4096 | |||
| min: 1 | |||
| max: 4096 | |||
| help: | |||
| zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。 | |||
| en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses. | |||
| pricing: | |||
| input: '0.0008' | |||
| output: '0.0024' | |||
| @@ -1,33 +1,50 @@ | |||
| model: anthropic.claude-v1 | |||
| label: | |||
| en_US: Claude V1 | |||
| en_US: Claude 1 | |||
| model_type: llm | |||
| model_properties: | |||
| mode: chat | |||
| context_size: 100000 | |||
| parameter_rules: | |||
| - name: max_tokens | |||
| use_template: max_tokens | |||
| required: true | |||
| type: int | |||
| default: 4096 | |||
| min: 1 | |||
| max: 4096 | |||
| help: | |||
| zh_Hans: 停止前生成的最大令牌数。请注意,Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。 | |||
| en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter. | |||
| - name: temperature | |||
| use_template: temperature | |||
| required: false | |||
| type: float | |||
| default: 1 | |||
| min: 0.0 | |||
| max: 1.0 | |||
| help: | |||
| zh_Hans: 生成内容的随机性。 | |||
| en_US: The amount of randomness injected into the response. | |||
| - name: top_p | |||
| use_template: top_p | |||
| - name: top_k | |||
| label: | |||
| zh_Hans: 取样数量 | |||
| en_US: Top K | |||
| type: int | |||
| required: false | |||
| type: float | |||
| default: 0.999 | |||
| min: 0.000 | |||
| max: 1.000 | |||
| help: | |||
| zh_Hans: 仅从每个后续标记的前 K 个选项中采样。 | |||
| en_US: Only sample from the top K options for each subsequent token. | |||
| zh_Hans: 在核采样中,Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p,但不能同时更改两者。 | |||
| en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both. | |||
| - name: top_k | |||
| required: false | |||
| default: 250 | |||
| type: int | |||
| default: 0 | |||
| min: 0 | |||
| # tip docs from aws has error, max value is 500 | |||
| max: 500 | |||
| - name: max_tokens_to_sample | |||
| use_template: max_tokens | |||
| required: true | |||
| default: 4096 | |||
| min: 1 | |||
| max: 4096 | |||
| help: | |||
| zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。 | |||
| en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses. | |||
| pricing: | |||
| input: '0.008' | |||
| output: '0.024' | |||
| @@ -1,33 +1,50 @@ | |||
| model: anthropic.claude-v2:1 | |||
| label: | |||
| en_US: Claude V2.1 | |||
| en_US: Claude 2.1 | |||
| model_type: llm | |||
| model_properties: | |||
| mode: chat | |||
| context_size: 200000 | |||
| parameter_rules: | |||
| - name: max_tokens | |||
| use_template: max_tokens | |||
| required: true | |||
| type: int | |||
| default: 4096 | |||
| min: 1 | |||
| max: 4096 | |||
| help: | |||
| zh_Hans: 停止前生成的最大令牌数。请注意,Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。 | |||
| en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter. | |||
| - name: temperature | |||
| use_template: temperature | |||
| required: false | |||
| type: float | |||
| default: 1 | |||
| min: 0.0 | |||
| max: 1.0 | |||
| help: | |||
| zh_Hans: 生成内容的随机性。 | |||
| en_US: The amount of randomness injected into the response. | |||
| - name: top_p | |||
| use_template: top_p | |||
| - name: top_k | |||
| label: | |||
| zh_Hans: 取样数量 | |||
| en_US: Top K | |||
| type: int | |||
| required: false | |||
| type: float | |||
| default: 0.999 | |||
| min: 0.000 | |||
| max: 1.000 | |||
| help: | |||
| zh_Hans: 仅从每个后续标记的前 K 个选项中采样。 | |||
| en_US: Only sample from the top K options for each subsequent token. | |||
| zh_Hans: 在核采样中,Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p,但不能同时更改两者。 | |||
| en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both. | |||
| - name: top_k | |||
| required: false | |||
| default: 250 | |||
| type: int | |||
| default: 0 | |||
| min: 0 | |||
| # tip docs from aws has error, max value is 500 | |||
| max: 500 | |||
| - name: max_tokens_to_sample | |||
| use_template: max_tokens | |||
| required: true | |||
| default: 4096 | |||
| min: 1 | |||
| max: 4096 | |||
| help: | |||
| zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。 | |||
| en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses. | |||
| pricing: | |||
| input: '0.008' | |||
| output: '0.024' | |||
| @@ -1,33 +1,50 @@ | |||
| model: anthropic.claude-v2 | |||
| label: | |||
| en_US: Claude V2 | |||
| en_US: Claude 2 | |||
| model_type: llm | |||
| model_properties: | |||
| mode: chat | |||
| context_size: 100000 | |||
| parameter_rules: | |||
| - name: max_tokens | |||
| use_template: max_tokens | |||
| required: true | |||
| type: int | |||
| default: 4096 | |||
| min: 1 | |||
| max: 4096 | |||
| help: | |||
| zh_Hans: 停止前生成的最大令牌数。请注意,Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。 | |||
| en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter. | |||
| - name: temperature | |||
| use_template: temperature | |||
| required: false | |||
| type: float | |||
| default: 1 | |||
| min: 0.0 | |||
| max: 1.0 | |||
| help: | |||
| zh_Hans: 生成内容的随机性。 | |||
| en_US: The amount of randomness injected into the response. | |||
| - name: top_p | |||
| use_template: top_p | |||
| - name: top_k | |||
| label: | |||
| zh_Hans: 取样数量 | |||
| en_US: Top K | |||
| type: int | |||
| required: false | |||
| type: float | |||
| default: 0.999 | |||
| min: 0.000 | |||
| max: 1.000 | |||
| help: | |||
| zh_Hans: 仅从每个后续标记的前 K 个选项中采样。 | |||
| en_US: Only sample from the top K options for each subsequent token. | |||
| zh_Hans: 在核采样中,Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p,但不能同时更改两者。 | |||
| en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both. | |||
| - name: top_k | |||
| required: false | |||
| default: 250 | |||
| type: int | |||
| default: 0 | |||
| min: 0 | |||
| # tip docs from aws has error, max value is 500 | |||
| max: 500 | |||
| - name: max_tokens_to_sample | |||
| use_template: max_tokens | |||
| required: true | |||
| default: 4096 | |||
| min: 1 | |||
| max: 4096 | |||
| help: | |||
| zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。 | |||
| en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses. | |||
| pricing: | |||
| input: '0.008' | |||
| output: '0.024' | |||
| @@ -72,16 +72,16 @@ class BedrockLargeLanguageModel(LargeLanguageModel): | |||
| :return: full response or stream response chunk generator result | |||
| """ | |||
| # invoke claude 3 models via anthropic official SDK | |||
| if "anthropic.claude-3" in model: | |||
| return self._invoke_claude3(model, credentials, prompt_messages, model_parameters, stop, stream, user) | |||
| # invoke model | |||
| # invoke anthropic models via anthropic official SDK | |||
| if "anthropic" in model: | |||
| return self._generate_anthropic(model, credentials, prompt_messages, model_parameters, stop, stream, user) | |||
| # invoke other models via boto3 client | |||
| return self._generate(model, credentials, prompt_messages, model_parameters, stop, stream, user) | |||
| def _invoke_claude3(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict, | |||
| def _generate_anthropic(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict, | |||
| stop: Optional[list[str]] = None, stream: bool = True, user: Optional[str] = None) -> Union[LLMResult, Generator]: | |||
| """ | |||
| Invoke Claude3 large language model | |||
| Invoke Anthropic large language model | |||
| :param model: model name | |||
| :param credentials: model credentials | |||
| @@ -114,7 +114,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel): | |||
| # ref: https://github.com/anthropics/anthropic-sdk-python/blob/e84645b07ca5267066700a104b4d8d6a8da1383d/src/anthropic/resources/messages.py#L465 | |||
| # extra_model_kwargs['metadata'] = message_create_params.Metadata(user_id=user) | |||
| system, prompt_message_dicts = self._convert_claude3_prompt_messages(prompt_messages) | |||
| system, prompt_message_dicts = self._convert_claude_prompt_messages(prompt_messages) | |||
| if system: | |||
| extra_model_kwargs['system'] = system | |||
| @@ -128,11 +128,11 @@ class BedrockLargeLanguageModel(LargeLanguageModel): | |||
| ) | |||
| if stream: | |||
| return self._handle_claude3_stream_response(model, credentials, response, prompt_messages) | |||
| return self._handle_claude_stream_response(model, credentials, response, prompt_messages) | |||
| return self._handle_claude3_response(model, credentials, response, prompt_messages) | |||
| return self._handle_claude_response(model, credentials, response, prompt_messages) | |||
| def _handle_claude3_response(self, model: str, credentials: dict, response: Message, | |||
| def _handle_claude_response(self, model: str, credentials: dict, response: Message, | |||
| prompt_messages: list[PromptMessage]) -> LLMResult: | |||
| """ | |||
| Handle llm chat response | |||
| @@ -172,7 +172,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel): | |||
| return response | |||
| def _handle_claude3_stream_response(self, model: str, credentials: dict, response: Stream[MessageStreamEvent], | |||
| def _handle_claude_stream_response(self, model: str, credentials: dict, response: Stream[MessageStreamEvent], | |||
| prompt_messages: list[PromptMessage], ) -> Generator: | |||
| """ | |||
| Handle llm chat stream response | |||
| @@ -231,7 +231,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel): | |||
| except Exception as ex: | |||
| raise InvokeError(str(ex)) | |||
| def _calc_claude3_response_usage(self, model: str, credentials: dict, prompt_tokens: int, completion_tokens: int) -> LLMUsage: | |||
| def _calc_claude_response_usage(self, model: str, credentials: dict, prompt_tokens: int, completion_tokens: int) -> LLMUsage: | |||
| """ | |||
| Calculate response usage | |||
| @@ -275,7 +275,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel): | |||
| return usage | |||
| def _convert_claude3_prompt_messages(self, prompt_messages: list[PromptMessage]) -> tuple[str, list[dict]]: | |||
| def _convert_claude_prompt_messages(self, prompt_messages: list[PromptMessage]) -> tuple[str, list[dict]]: | |||
| """ | |||
| Convert prompt messages to dict list and system | |||
| """ | |||
| @@ -295,11 +295,11 @@ class BedrockLargeLanguageModel(LargeLanguageModel): | |||
| prompt_message_dicts = [] | |||
| for message in prompt_messages: | |||
| if not isinstance(message, SystemPromptMessage): | |||
| prompt_message_dicts.append(self._convert_claude3_prompt_message_to_dict(message)) | |||
| prompt_message_dicts.append(self._convert_claude_prompt_message_to_dict(message)) | |||
| return system, prompt_message_dicts | |||
| def _convert_claude3_prompt_message_to_dict(self, message: PromptMessage) -> dict: | |||
| def _convert_claude_prompt_message_to_dict(self, message: PromptMessage) -> dict: | |||
| """ | |||
| Convert PromptMessage to dict | |||
| """ | |||
| @@ -405,7 +405,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel): | |||
| if "anthropic.claude-3" in model: | |||
| try: | |||
| self._invoke_claude3(model=model, | |||
| self._invoke_claude(model=model, | |||
| credentials=credentials, | |||
| prompt_messages=[{"role": "user", "content": "ping"}], | |||
| model_parameters={}, | |||