Browse Source

chore(api/tasks): apply ruff reformatting (#7594)

tags/0.7.2
Bowen Liang 1 year ago
parent
commit
979422cdc6
No account linked to committer's email address
29 changed files with 546 additions and 508 deletions
  1. 0
    1
      api/pyproject.toml
  2. 18
    14
      api/tasks/add_document_to_index_task.py
  3. 14
    17
      api/tasks/annotation/add_annotation_to_index_task.py
  4. 27
    34
      api/tasks/annotation/batch_import_annotations_task.py
  5. 10
    13
      api/tasks/annotation/delete_annotation_index_task.py
  6. 17
    22
      api/tasks/annotation/disable_annotation_reply_task.py
  7. 30
    34
      api/tasks/annotation/enable_annotation_reply_task.py
  8. 15
    18
      api/tasks/annotation/update_annotation_to_index_task.py
  9. 28
    25
      api/tasks/batch_create_segment_to_index_task.py
  10. 24
    14
      api/tasks/clean_dataset_task.py
  11. 9
    7
      api/tasks/clean_document_task.py
  12. 13
    9
      api/tasks/clean_notion_document_task.py
  13. 16
    14
      api/tasks/create_segment_to_index_task.py
  14. 59
    43
      api/tasks/deal_dataset_vector_index_task.py
  15. 10
    8
      api/tasks/delete_segment_from_index_task.py
  16. 13
    11
      api/tasks/disable_segment_from_index_task.py
  17. 31
    23
      api/tasks/document_indexing_sync_task.py
  18. 16
    16
      api/tasks/document_indexing_task.py
  19. 15
    12
      api/tasks/document_indexing_update_task.py
  20. 16
    16
      api/tasks/duplicate_document_indexing_task.py
  21. 15
    13
      api/tasks/enable_segment_to_index_task.py
  22. 25
    18
      api/tasks/mail_invite_member_task.py
  23. 10
    12
      api/tasks/mail_reset_password_task.py
  24. 10
    10
      api/tasks/ops_trace_task.py
  25. 8
    9
      api/tasks/recover_document_indexing_task.py
  26. 53
    52
      api/tasks/remove_app_and_related_data_task.py
  27. 10
    7
      api/tasks/remove_document_from_index_task.py
  28. 18
    18
      api/tasks/retry_document_indexing_task.py
  29. 16
    18
      api/tasks/sync_website_document_indexing_task.py

+ 0
- 1
api/pyproject.toml View File

"models/**/*.py", "models/**/*.py",
"migrations/**/*", "migrations/**/*",
"services/**/*.py", "services/**/*.py",
"tasks/**/*.py",
] ]


[tool.pytest_env] [tool.pytest_env]

+ 18
- 14
api/tasks/add_document_to_index_task.py View File

from models.dataset import DocumentSegment from models.dataset import DocumentSegment




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def add_document_to_index_task(dataset_document_id: str): def add_document_to_index_task(dataset_document_id: str):
""" """
Async Add document to index Async Add document to index


Usage: add_document_to_index.delay(document_id) Usage: add_document_to_index.delay(document_id)
""" """
logging.info(click.style('Start add document to index: {}'.format(dataset_document_id), fg='green'))
logging.info(click.style("Start add document to index: {}".format(dataset_document_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document_id).first() dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document_id).first()
if not dataset_document: if not dataset_document:
raise NotFound('Document not found')
raise NotFound("Document not found")


if dataset_document.indexing_status != 'completed':
if dataset_document.indexing_status != "completed":
return return


indexing_cache_key = 'document_{}_indexing'.format(dataset_document.id)
indexing_cache_key = "document_{}_indexing".format(dataset_document.id)


try: try:
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True
) \
.order_by(DocumentSegment.position.asc()).all()
segments = (
db.session.query(DocumentSegment)
.filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
.order_by(DocumentSegment.position.asc())
.all()
)


documents = [] documents = []
for segment in segments: for segment in segments:
"doc_hash": segment.index_node_hash, "doc_hash": segment.index_node_hash,
"document_id": segment.document_id, "document_id": segment.document_id,
"dataset_id": segment.dataset_id, "dataset_id": segment.dataset_id,
}
},
) )


documents.append(document) documents.append(document)
dataset = dataset_document.dataset dataset = dataset_document.dataset


if not dataset: if not dataset:
raise Exception('Document has no dataset')
raise Exception("Document has no dataset")


index_type = dataset.doc_form index_type = dataset.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor() index_processor = IndexProcessorFactory(index_type).init_index_processor()


end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('Document added to index: {} latency: {}'.format(dataset_document.id, end_at - start_at), fg='green'))
click.style(
"Document added to index: {} latency: {}".format(dataset_document.id, end_at - start_at), fg="green"
)
)
except Exception as e: except Exception as e:
logging.exception("add document to index failed") logging.exception("add document to index failed")
dataset_document.enabled = False dataset_document.enabled = False
dataset_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) dataset_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
dataset_document.status = 'error'
dataset_document.status = "error"
dataset_document.error = str(e) dataset_document.error = str(e)
db.session.commit() db.session.commit()
finally: finally:

+ 14
- 17
api/tasks/annotation/add_annotation_to_index_task.py View File

from services.dataset_service import DatasetCollectionBindingService from services.dataset_service import DatasetCollectionBindingService




@shared_task(queue='dataset')
def add_annotation_to_index_task(annotation_id: str, question: str, tenant_id: str, app_id: str,
collection_binding_id: str):
@shared_task(queue="dataset")
def add_annotation_to_index_task(
annotation_id: str, question: str, tenant_id: str, app_id: str, collection_binding_id: str
):
""" """
Add annotation to index. Add annotation to index.
:param annotation_id: annotation id :param annotation_id: annotation id


Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct) Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct)
""" """
logging.info(click.style('Start build index for annotation: {}'.format(annotation_id), fg='green'))
logging.info(click.style("Start build index for annotation: {}".format(annotation_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


try: try:
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type( dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
collection_binding_id,
'annotation'
collection_binding_id, "annotation"
) )
dataset = Dataset( dataset = Dataset(
id=app_id, id=app_id,
tenant_id=tenant_id, tenant_id=tenant_id,
indexing_technique='high_quality',
indexing_technique="high_quality",
embedding_model_provider=dataset_collection_binding.provider_name, embedding_model_provider=dataset_collection_binding.provider_name,
embedding_model=dataset_collection_binding.model_name, embedding_model=dataset_collection_binding.model_name,
collection_binding_id=dataset_collection_binding.id
collection_binding_id=dataset_collection_binding.id,
) )


document = Document( document = Document(
page_content=question,
metadata={
"annotation_id": annotation_id,
"app_id": app_id,
"doc_id": annotation_id
}
page_content=question, metadata={"annotation_id": annotation_id, "app_id": app_id, "doc_id": annotation_id}
) )
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
vector.create([document], duplicate_check=True) vector.create([document], duplicate_check=True)


end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style( click.style(
'Build index successful for annotation: {} latency: {}'.format(annotation_id, end_at - start_at),
fg='green'))
"Build index successful for annotation: {} latency: {}".format(annotation_id, end_at - start_at),
fg="green",
)
)
except Exception: except Exception:
logging.exception("Build index for annotation failed") logging.exception("Build index for annotation failed")

+ 27
- 34
api/tasks/annotation/batch_import_annotations_task.py View File

from services.dataset_service import DatasetCollectionBindingService from services.dataset_service import DatasetCollectionBindingService




@shared_task(queue='dataset')
def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str,
user_id: str):
@shared_task(queue="dataset")
def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str, user_id: str):
""" """
Add annotation to index. Add annotation to index.
:param job_id: job_id :param job_id: job_id
:param user_id: user_id :param user_id: user_id


""" """
logging.info(click.style('Start batch import annotation: {}'.format(job_id), fg='green'))
logging.info(click.style("Start batch import annotation: {}".format(job_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()
indexing_cache_key = 'app_annotation_batch_import_{}'.format(str(job_id))
indexing_cache_key = "app_annotation_batch_import_{}".format(str(job_id))
# get app info # get app info
app = db.session.query(App).filter(
App.id == app_id,
App.tenant_id == tenant_id,
App.status == 'normal'
).first()
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id, App.status == "normal").first()


if app: if app:
try: try:
documents = [] documents = []
for content in content_list: for content in content_list:
annotation = MessageAnnotation( annotation = MessageAnnotation(
app_id=app.id,
content=content['answer'],
question=content['question'],
account_id=user_id
app_id=app.id, content=content["answer"], question=content["question"], account_id=user_id
) )
db.session.add(annotation) db.session.add(annotation)
db.session.flush() db.session.flush()


document = Document( document = Document(
page_content=content['question'],
metadata={
"annotation_id": annotation.id,
"app_id": app_id,
"doc_id": annotation.id
}
page_content=content["question"],
metadata={"annotation_id": annotation.id, "app_id": app_id, "doc_id": annotation.id},
) )
documents.append(document) documents.append(document)
# if annotation reply is enabled , batch add annotations' index # if annotation reply is enabled , batch add annotations' index
app_annotation_setting = db.session.query(AppAnnotationSetting).filter(
AppAnnotationSetting.app_id == app_id
).first()
app_annotation_setting = (
db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app_id).first()
)


if app_annotation_setting: if app_annotation_setting:
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
app_annotation_setting.collection_binding_id,
'annotation'
dataset_collection_binding = (
DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
app_annotation_setting.collection_binding_id, "annotation"
)
) )
if not dataset_collection_binding: if not dataset_collection_binding:
raise NotFound("App annotation setting not found") raise NotFound("App annotation setting not found")
dataset = Dataset( dataset = Dataset(
id=app_id, id=app_id,
tenant_id=tenant_id, tenant_id=tenant_id,
indexing_technique='high_quality',
indexing_technique="high_quality",
embedding_model_provider=dataset_collection_binding.provider_name, embedding_model_provider=dataset_collection_binding.provider_name,
embedding_model=dataset_collection_binding.model_name, embedding_model=dataset_collection_binding.model_name,
collection_binding_id=dataset_collection_binding.id
collection_binding_id=dataset_collection_binding.id,
) )


vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
vector.create(documents, duplicate_check=True) vector.create(documents, duplicate_check=True)


db.session.commit() db.session.commit()
redis_client.setex(indexing_cache_key, 600, 'completed')
redis_client.setex(indexing_cache_key, 600, "completed")
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style( click.style(
'Build index successful for batch import annotation: {} latency: {}'.format(job_id, end_at - start_at),
fg='green'))
"Build index successful for batch import annotation: {} latency: {}".format(
job_id, end_at - start_at
),
fg="green",
)
)
except Exception as e: except Exception as e:
db.session.rollback() db.session.rollback()
redis_client.setex(indexing_cache_key, 600, 'error')
indexing_error_msg_key = 'app_annotation_batch_import_error_msg_{}'.format(str(job_id))
redis_client.setex(indexing_cache_key, 600, "error")
indexing_error_msg_key = "app_annotation_batch_import_error_msg_{}".format(str(job_id))
redis_client.setex(indexing_error_msg_key, 600, str(e)) redis_client.setex(indexing_error_msg_key, 600, str(e))
logging.exception("Build index for batch import annotations failed") logging.exception("Build index for batch import annotations failed")

+ 10
- 13
api/tasks/annotation/delete_annotation_index_task.py View File

from services.dataset_service import DatasetCollectionBindingService from services.dataset_service import DatasetCollectionBindingService




@shared_task(queue='dataset')
def delete_annotation_index_task(annotation_id: str, app_id: str, tenant_id: str,
collection_binding_id: str):
@shared_task(queue="dataset")
def delete_annotation_index_task(annotation_id: str, app_id: str, tenant_id: str, collection_binding_id: str):
""" """
Async delete annotation index task Async delete annotation index task
""" """
logging.info(click.style('Start delete app annotation index: {}'.format(app_id), fg='green'))
logging.info(click.style("Start delete app annotation index: {}".format(app_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()
try: try:
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type( dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
collection_binding_id,
'annotation'
collection_binding_id, "annotation"
) )


dataset = Dataset( dataset = Dataset(
id=app_id, id=app_id,
tenant_id=tenant_id, tenant_id=tenant_id,
indexing_technique='high_quality',
collection_binding_id=dataset_collection_binding.id
indexing_technique="high_quality",
collection_binding_id=dataset_collection_binding.id,
) )


try: try:
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
vector.delete_by_metadata_field('annotation_id', annotation_id)
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
vector.delete_by_metadata_field("annotation_id", annotation_id)
except Exception: except Exception:
logging.exception("Delete annotation index failed when annotation deleted.") logging.exception("Delete annotation index failed when annotation deleted.")
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('App annotations index deleted : {} latency: {}'.format(app_id, end_at - start_at),
fg='green'))
click.style("App annotations index deleted : {} latency: {}".format(app_id, end_at - start_at), fg="green")
)
except Exception as e: except Exception as e:
logging.exception("Annotation deleted index failed:{}".format(str(e))) logging.exception("Annotation deleted index failed:{}".format(str(e)))


+ 17
- 22
api/tasks/annotation/disable_annotation_reply_task.py View File

from models.model import App, AppAnnotationSetting, MessageAnnotation from models.model import App, AppAnnotationSetting, MessageAnnotation




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def disable_annotation_reply_task(job_id: str, app_id: str, tenant_id: str): def disable_annotation_reply_task(job_id: str, app_id: str, tenant_id: str):
""" """
Async enable annotation reply task Async enable annotation reply task
""" """
logging.info(click.style('Start delete app annotations index: {}'.format(app_id), fg='green'))
logging.info(click.style("Start delete app annotations index: {}".format(app_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()
# get app info # get app info
app = db.session.query(App).filter(
App.id == app_id,
App.tenant_id == tenant_id,
App.status == 'normal'
).first()
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id, App.status == "normal").first()
annotations_count = db.session.query(MessageAnnotation).filter(MessageAnnotation.app_id == app_id).count() annotations_count = db.session.query(MessageAnnotation).filter(MessageAnnotation.app_id == app_id).count()
if not app: if not app:
raise NotFound("App not found") raise NotFound("App not found")


app_annotation_setting = db.session.query(AppAnnotationSetting).filter(
AppAnnotationSetting.app_id == app_id
).first()
app_annotation_setting = (
db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app_id).first()
)


if not app_annotation_setting: if not app_annotation_setting:
raise NotFound("App annotation setting not found") raise NotFound("App annotation setting not found")


disable_app_annotation_key = 'disable_app_annotation_{}'.format(str(app_id))
disable_app_annotation_job_key = 'disable_app_annotation_job_{}'.format(str(job_id))
disable_app_annotation_key = "disable_app_annotation_{}".format(str(app_id))
disable_app_annotation_job_key = "disable_app_annotation_job_{}".format(str(job_id))


try: try:

dataset = Dataset( dataset = Dataset(
id=app_id, id=app_id,
tenant_id=tenant_id, tenant_id=tenant_id,
indexing_technique='high_quality',
collection_binding_id=app_annotation_setting.collection_binding_id
indexing_technique="high_quality",
collection_binding_id=app_annotation_setting.collection_binding_id,
) )


try: try:
if annotations_count > 0: if annotations_count > 0:
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
vector.delete_by_metadata_field('app_id', app_id)
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
vector.delete_by_metadata_field("app_id", app_id)
except Exception: except Exception:
logging.exception("Delete annotation index failed when annotation deleted.") logging.exception("Delete annotation index failed when annotation deleted.")
redis_client.setex(disable_app_annotation_job_key, 600, 'completed')
redis_client.setex(disable_app_annotation_job_key, 600, "completed")


# delete annotation setting # delete annotation setting
db.session.delete(app_annotation_setting) db.session.delete(app_annotation_setting)


end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('App annotations index deleted : {} latency: {}'.format(app_id, end_at - start_at),
fg='green'))
click.style("App annotations index deleted : {} latency: {}".format(app_id, end_at - start_at), fg="green")
)
except Exception as e: except Exception as e:
logging.exception("Annotation batch deleted index failed:{}".format(str(e))) logging.exception("Annotation batch deleted index failed:{}".format(str(e)))
redis_client.setex(disable_app_annotation_job_key, 600, 'error')
disable_app_annotation_error_key = 'disable_app_annotation_error_{}'.format(str(job_id))
redis_client.setex(disable_app_annotation_job_key, 600, "error")
disable_app_annotation_error_key = "disable_app_annotation_error_{}".format(str(job_id))
redis_client.setex(disable_app_annotation_error_key, 600, str(e)) redis_client.setex(disable_app_annotation_error_key, 600, str(e))
finally: finally:
redis_client.delete(disable_app_annotation_key) redis_client.delete(disable_app_annotation_key)

+ 30
- 34
api/tasks/annotation/enable_annotation_reply_task.py View File

from services.dataset_service import DatasetCollectionBindingService from services.dataset_service import DatasetCollectionBindingService




@shared_task(queue='dataset')
def enable_annotation_reply_task(job_id: str, app_id: str, user_id: str, tenant_id: str, score_threshold: float,
embedding_provider_name: str, embedding_model_name: str):
@shared_task(queue="dataset")
def enable_annotation_reply_task(
job_id: str,
app_id: str,
user_id: str,
tenant_id: str,
score_threshold: float,
embedding_provider_name: str,
embedding_model_name: str,
):
""" """
Async enable annotation reply task Async enable annotation reply task
""" """
logging.info(click.style('Start add app annotation to index: {}'.format(app_id), fg='green'))
logging.info(click.style("Start add app annotation to index: {}".format(app_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()
# get app info # get app info
app = db.session.query(App).filter(
App.id == app_id,
App.tenant_id == tenant_id,
App.status == 'normal'
).first()
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id, App.status == "normal").first()


if not app: if not app:
raise NotFound("App not found") raise NotFound("App not found")


annotations = db.session.query(MessageAnnotation).filter(MessageAnnotation.app_id == app_id).all() annotations = db.session.query(MessageAnnotation).filter(MessageAnnotation.app_id == app_id).all()
enable_app_annotation_key = 'enable_app_annotation_{}'.format(str(app_id))
enable_app_annotation_job_key = 'enable_app_annotation_job_{}'.format(str(job_id))
enable_app_annotation_key = "enable_app_annotation_{}".format(str(app_id))
enable_app_annotation_job_key = "enable_app_annotation_job_{}".format(str(job_id))


try: try:
documents = [] documents = []
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_provider_name,
embedding_model_name,
'annotation'
embedding_provider_name, embedding_model_name, "annotation"
)
annotation_setting = (
db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app_id).first()
) )
annotation_setting = db.session.query(AppAnnotationSetting).filter(
AppAnnotationSetting.app_id == app_id).first()
if annotation_setting: if annotation_setting:
annotation_setting.score_threshold = score_threshold annotation_setting.score_threshold = score_threshold
annotation_setting.collection_binding_id = dataset_collection_binding.id annotation_setting.collection_binding_id = dataset_collection_binding.id
score_threshold=score_threshold, score_threshold=score_threshold,
collection_binding_id=dataset_collection_binding.id, collection_binding_id=dataset_collection_binding.id,
created_user_id=user_id, created_user_id=user_id,
updated_user_id=user_id
updated_user_id=user_id,
) )
db.session.add(new_app_annotation_setting) db.session.add(new_app_annotation_setting)


dataset = Dataset( dataset = Dataset(
id=app_id, id=app_id,
tenant_id=tenant_id, tenant_id=tenant_id,
indexing_technique='high_quality',
indexing_technique="high_quality",
embedding_model_provider=embedding_provider_name, embedding_model_provider=embedding_provider_name,
embedding_model=embedding_model_name, embedding_model=embedding_model_name,
collection_binding_id=dataset_collection_binding.id
collection_binding_id=dataset_collection_binding.id,
) )
if annotations: if annotations:
for annotation in annotations: for annotation in annotations:
document = Document( document = Document(
page_content=annotation.question, page_content=annotation.question,
metadata={
"annotation_id": annotation.id,
"app_id": app_id,
"doc_id": annotation.id
}
metadata={"annotation_id": annotation.id, "app_id": app_id, "doc_id": annotation.id},
) )
documents.append(document) documents.append(document)


vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
try: try:
vector.delete_by_metadata_field('app_id', app_id)
vector.delete_by_metadata_field("app_id", app_id)
except Exception as e: except Exception as e:
logging.info(
click.style('Delete annotation index error: {}'.format(str(e)),
fg='red'))
logging.info(click.style("Delete annotation index error: {}".format(str(e)), fg="red"))
vector.create(documents) vector.create(documents)
db.session.commit() db.session.commit()
redis_client.setex(enable_app_annotation_job_key, 600, 'completed')
redis_client.setex(enable_app_annotation_job_key, 600, "completed")
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('App annotations added to index: {} latency: {}'.format(app_id, end_at - start_at),
fg='green'))
click.style("App annotations added to index: {} latency: {}".format(app_id, end_at - start_at), fg="green")
)
except Exception as e: except Exception as e:
logging.exception("Annotation batch created index failed:{}".format(str(e))) logging.exception("Annotation batch created index failed:{}".format(str(e)))
redis_client.setex(enable_app_annotation_job_key, 600, 'error')
enable_app_annotation_error_key = 'enable_app_annotation_error_{}'.format(str(job_id))
redis_client.setex(enable_app_annotation_job_key, 600, "error")
enable_app_annotation_error_key = "enable_app_annotation_error_{}".format(str(job_id))
redis_client.setex(enable_app_annotation_error_key, 600, str(e)) redis_client.setex(enable_app_annotation_error_key, 600, str(e))
db.session.rollback() db.session.rollback()
finally: finally:

+ 15
- 18
api/tasks/annotation/update_annotation_to_index_task.py View File

from services.dataset_service import DatasetCollectionBindingService from services.dataset_service import DatasetCollectionBindingService




@shared_task(queue='dataset')
def update_annotation_to_index_task(annotation_id: str, question: str, tenant_id: str, app_id: str,
collection_binding_id: str):
@shared_task(queue="dataset")
def update_annotation_to_index_task(
annotation_id: str, question: str, tenant_id: str, app_id: str, collection_binding_id: str
):
""" """
Update annotation to index. Update annotation to index.
:param annotation_id: annotation id :param annotation_id: annotation id


Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct) Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct)
""" """
logging.info(click.style('Start update index for annotation: {}'.format(annotation_id), fg='green'))
logging.info(click.style("Start update index for annotation: {}".format(annotation_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


try: try:
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type( dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
collection_binding_id,
'annotation'
collection_binding_id, "annotation"
) )


dataset = Dataset( dataset = Dataset(
id=app_id, id=app_id,
tenant_id=tenant_id, tenant_id=tenant_id,
indexing_technique='high_quality',
indexing_technique="high_quality",
embedding_model_provider=dataset_collection_binding.provider_name, embedding_model_provider=dataset_collection_binding.provider_name,
embedding_model=dataset_collection_binding.model_name, embedding_model=dataset_collection_binding.model_name,
collection_binding_id=dataset_collection_binding.id
collection_binding_id=dataset_collection_binding.id,
) )


document = Document( document = Document(
page_content=question,
metadata={
"annotation_id": annotation_id,
"app_id": app_id,
"doc_id": annotation_id
}
page_content=question, metadata={"annotation_id": annotation_id, "app_id": app_id, "doc_id": annotation_id}
) )
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
vector.delete_by_metadata_field('annotation_id', annotation_id)
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
vector.delete_by_metadata_field("annotation_id", annotation_id)
vector.add_texts([document]) vector.add_texts([document])
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style( click.style(
'Build index successful for annotation: {} latency: {}'.format(annotation_id, end_at - start_at),
fg='green'))
"Build index successful for annotation: {} latency: {}".format(annotation_id, end_at - start_at),
fg="green",
)
)
except Exception: except Exception:
logging.exception("Build index for annotation failed") logging.exception("Build index for annotation failed")

+ 28
- 25
api/tasks/batch_create_segment_to_index_task.py View File

from models.dataset import Dataset, Document, DocumentSegment from models.dataset import Dataset, Document, DocumentSegment




@shared_task(queue='dataset')
def batch_create_segment_to_index_task(job_id: str, content: list, dataset_id: str, document_id: str,
tenant_id: str, user_id: str):
@shared_task(queue="dataset")
def batch_create_segment_to_index_task(
job_id: str, content: list, dataset_id: str, document_id: str, tenant_id: str, user_id: str
):
""" """
Async batch create segment to index Async batch create segment to index
:param job_id: :param job_id:


Usage: batch_create_segment_to_index_task.delay(segment_id) Usage: batch_create_segment_to_index_task.delay(segment_id)
""" """
logging.info(click.style('Start batch create segment jobId: {}'.format(job_id), fg='green'))
logging.info(click.style("Start batch create segment jobId: {}".format(job_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


indexing_cache_key = 'segment_batch_import_{}'.format(job_id)
indexing_cache_key = "segment_batch_import_{}".format(job_id)


try: try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset: if not dataset:
raise ValueError('Dataset not exist.')
raise ValueError("Dataset not exist.")


dataset_document = db.session.query(Document).filter(Document.id == document_id).first() dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
if not dataset_document: if not dataset_document:
raise ValueError('Document not exist.')
raise ValueError("Document not exist.")


if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
raise ValueError('Document is not available.')
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
raise ValueError("Document is not available.")
document_segments = [] document_segments = []
embedding_model = None embedding_model = None
if dataset.indexing_technique == 'high_quality':
if dataset.indexing_technique == "high_quality":
model_manager = ModelManager() model_manager = ModelManager()
embedding_model = model_manager.get_model_instance( embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id, tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider, provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING, model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
model=dataset.embedding_model,
) )


for segment in content: for segment in content:
content = segment['content']
content = segment["content"]
doc_id = str(uuid.uuid4()) doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content) segment_hash = helper.generate_text_hash(content)
# calc embedding use tokens # calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(
texts=[content]
) if embedding_model else 0
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == dataset_document.id
).scalar()
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) if embedding_model else 0
max_position = (
db.session.query(func.max(DocumentSegment.position))
.filter(DocumentSegment.document_id == dataset_document.id)
.scalar()
)
segment_document = DocumentSegment( segment_document = DocumentSegment(
tenant_id=tenant_id, tenant_id=tenant_id,
dataset_id=dataset_id, dataset_id=dataset_id,
tokens=tokens, tokens=tokens,
created_by=user_id, created_by=user_id,
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
status='completed',
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
status="completed",
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
) )
if dataset_document.doc_form == 'qa_model':
segment_document.answer = segment['answer']
if dataset_document.doc_form == "qa_model":
segment_document.answer = segment["answer"]
db.session.add(segment_document) db.session.add(segment_document)
document_segments.append(segment_document) document_segments.append(segment_document)
# add index to db # add index to db
indexing_runner = IndexingRunner() indexing_runner = IndexingRunner()
indexing_runner.batch_add_segments(document_segments, dataset) indexing_runner.batch_add_segments(document_segments, dataset)
db.session.commit() db.session.commit()
redis_client.setex(indexing_cache_key, 600, 'completed')
redis_client.setex(indexing_cache_key, 600, "completed")
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style('Segment batch created job: {} latency: {}'.format(job_id, end_at - start_at), fg='green'))
logging.info(
click.style("Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), fg="green")
)
except Exception as e: except Exception as e:
logging.exception("Segments batch created index failed:{}".format(str(e))) logging.exception("Segments batch created index failed:{}".format(str(e)))
redis_client.setex(indexing_cache_key, 600, 'error')
redis_client.setex(indexing_cache_key, 600, "error")

+ 24
- 14
api/tasks/clean_dataset_task.py View File





# Add import statement for ValueError # Add import statement for ValueError
@shared_task(queue='dataset')
def clean_dataset_task(dataset_id: str, tenant_id: str, indexing_technique: str,
index_struct: str, collection_binding_id: str, doc_form: str):
@shared_task(queue="dataset")
def clean_dataset_task(
dataset_id: str,
tenant_id: str,
indexing_technique: str,
index_struct: str,
collection_binding_id: str,
doc_form: str,
):
""" """
Clean dataset when dataset deleted. Clean dataset when dataset deleted.
:param dataset_id: dataset id :param dataset_id: dataset id


Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct) Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct)
""" """
logging.info(click.style('Start clean dataset when dataset deleted: {}'.format(dataset_id), fg='green'))
logging.info(click.style("Start clean dataset when dataset deleted: {}".format(dataset_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


try: try:
segments = db.session.query(DocumentSegment).filter(DocumentSegment.dataset_id == dataset_id).all() segments = db.session.query(DocumentSegment).filter(DocumentSegment.dataset_id == dataset_id).all()


if documents is None or len(documents) == 0: if documents is None or len(documents) == 0:
logging.info(click.style('No documents found for dataset: {}'.format(dataset_id), fg='green'))
logging.info(click.style("No documents found for dataset: {}".format(dataset_id), fg="green"))
else: else:
logging.info(click.style('Cleaning documents for dataset: {}'.format(dataset_id), fg='green'))
logging.info(click.style("Cleaning documents for dataset: {}".format(dataset_id), fg="green"))
# Specify the index type before initializing the index processor # Specify the index type before initializing the index processor
if doc_form is None: if doc_form is None:
raise ValueError("Index type must be specified.") raise ValueError("Index type must be specified.")
if documents: if documents:
for document in documents: for document in documents:
try: try:
if document.data_source_type == 'upload_file':
if document.data_source_type == "upload_file":
if document.data_source_info: if document.data_source_info:
data_source_info = document.data_source_info_dict data_source_info = document.data_source_info_dict
if data_source_info and 'upload_file_id' in data_source_info:
file_id = data_source_info['upload_file_id']
file = db.session.query(UploadFile).filter(
UploadFile.tenant_id == document.tenant_id,
UploadFile.id == file_id
).first()
if data_source_info and "upload_file_id" in data_source_info:
file_id = data_source_info["upload_file_id"]
file = (
db.session.query(UploadFile)
.filter(UploadFile.tenant_id == document.tenant_id, UploadFile.id == file_id)
.first()
)
if not file: if not file:
continue continue
storage.delete(file.key) storage.delete(file.key)
db.session.commit() db.session.commit()
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('Cleaned dataset when dataset deleted: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
click.style(
"Cleaned dataset when dataset deleted: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"
)
)
except Exception: except Exception:
logging.exception("Cleaned dataset when dataset deleted failed") logging.exception("Cleaned dataset when dataset deleted failed")

+ 9
- 7
api/tasks/clean_document_task.py View File

from models.model import UploadFile from models.model import UploadFile




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_id: Optional[str]): def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_id: Optional[str]):
""" """
Clean document when document deleted. Clean document when document deleted.


Usage: clean_document_task.delay(document_id, dataset_id) Usage: clean_document_task.delay(document_id, dataset_id)
""" """
logging.info(click.style('Start clean document when document deleted: {}'.format(document_id), fg='green'))
logging.info(click.style("Start clean document when document deleted: {}".format(document_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


try: try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()


if not dataset: if not dataset:
raise Exception('Document has no dataset')
raise Exception("Document has no dataset")


segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all() segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
# check segment is exist # check segment is exist


db.session.commit() db.session.commit()
if file_id: if file_id:
file = db.session.query(UploadFile).filter(
UploadFile.id == file_id
).first()
file = db.session.query(UploadFile).filter(UploadFile.id == file_id).first()
if file: if file:
try: try:
storage.delete(file.key) storage.delete(file.key)


end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('Cleaned document when document deleted: {} latency: {}'.format(document_id, end_at - start_at), fg='green'))
click.style(
"Cleaned document when document deleted: {} latency: {}".format(document_id, end_at - start_at),
fg="green",
)
)
except Exception: except Exception:
logging.exception("Cleaned document when document deleted failed") logging.exception("Cleaned document when document deleted failed")

+ 13
- 9
api/tasks/clean_notion_document_task.py View File

from models.dataset import Dataset, Document, DocumentSegment from models.dataset import Dataset, Document, DocumentSegment




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def clean_notion_document_task(document_ids: list[str], dataset_id: str): def clean_notion_document_task(document_ids: list[str], dataset_id: str):
""" """
Clean document when document deleted. Clean document when document deleted.


Usage: clean_notion_document_task.delay(document_ids, dataset_id) Usage: clean_notion_document_task.delay(document_ids, dataset_id)
""" """
logging.info(click.style('Start clean document when import form notion document deleted: {}'.format(dataset_id), fg='green'))
logging.info(
click.style("Start clean document when import form notion document deleted: {}".format(dataset_id), fg="green")
)
start_at = time.perf_counter() start_at = time.perf_counter()


try: try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()


if not dataset: if not dataset:
raise Exception('Document has no dataset')
raise Exception("Document has no dataset")
index_type = dataset.doc_form index_type = dataset.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor() index_processor = IndexProcessorFactory(index_type).init_index_processor()
for document_id in document_ids: for document_id in document_ids:
document = db.session.query(Document).filter(
Document.id == document_id
).first()
document = db.session.query(Document).filter(Document.id == document_id).first()
db.session.delete(document) db.session.delete(document)


segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all() segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
db.session.commit() db.session.commit()
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('Clean document when import form notion document deleted end :: {} latency: {}'.format(
dataset_id, end_at - start_at),
fg='green'))
click.style(
"Clean document when import form notion document deleted end :: {} latency: {}".format(
dataset_id, end_at - start_at
),
fg="green",
)
)
except Exception: except Exception:
logging.exception("Cleaned document when import form notion document deleted failed") logging.exception("Cleaned document when import form notion document deleted failed")

+ 16
- 14
api/tasks/create_segment_to_index_task.py View File

from models.dataset import DocumentSegment from models.dataset import DocumentSegment




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def create_segment_to_index_task(segment_id: str, keywords: Optional[list[str]] = None): def create_segment_to_index_task(segment_id: str, keywords: Optional[list[str]] = None):
""" """
Async create segment to index Async create segment to index
:param keywords: :param keywords:
Usage: create_segment_to_index_task.delay(segment_id) Usage: create_segment_to_index_task.delay(segment_id)
""" """
logging.info(click.style('Start create segment to index: {}'.format(segment_id), fg='green'))
logging.info(click.style("Start create segment to index: {}".format(segment_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first() segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first()
if not segment: if not segment:
raise NotFound('Segment not found')
raise NotFound("Segment not found")


if segment.status != 'waiting':
if segment.status != "waiting":
return return


indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
indexing_cache_key = "segment_{}_indexing".format(segment.id)


try: try:
# update segment status to indexing # update segment status to indexing
update_params = { update_params = {
DocumentSegment.status: "indexing", DocumentSegment.status: "indexing",
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
} }
DocumentSegment.query.filter_by(id=segment.id).update(update_params) DocumentSegment.query.filter_by(id=segment.id).update(update_params)
db.session.commit() db.session.commit()
"doc_hash": segment.index_node_hash, "doc_hash": segment.index_node_hash,
"document_id": segment.document_id, "document_id": segment.document_id,
"dataset_id": segment.dataset_id, "dataset_id": segment.dataset_id,
}
},
) )


dataset = segment.dataset dataset = segment.dataset


if not dataset: if not dataset:
logging.info(click.style('Segment {} has no dataset, pass.'.format(segment.id), fg='cyan'))
logging.info(click.style("Segment {} has no dataset, pass.".format(segment.id), fg="cyan"))
return return


dataset_document = segment.document dataset_document = segment.document


if not dataset_document: if not dataset_document:
logging.info(click.style('Segment {} has no document, pass.'.format(segment.id), fg='cyan'))
logging.info(click.style("Segment {} has no document, pass.".format(segment.id), fg="cyan"))
return return


if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
logging.info(click.style('Segment {} document status is invalid, pass.'.format(segment.id), fg='cyan'))
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
logging.info(click.style("Segment {} document status is invalid, pass.".format(segment.id), fg="cyan"))
return return


index_type = dataset.doc_form index_type = dataset.doc_form
# update segment to completed # update segment to completed
update_params = { update_params = {
DocumentSegment.status: "completed", DocumentSegment.status: "completed",
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
} }
DocumentSegment.query.filter_by(id=segment.id).update(update_params) DocumentSegment.query.filter_by(id=segment.id).update(update_params)
db.session.commit() db.session.commit()


end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style('Segment created to index: {} latency: {}'.format(segment.id, end_at - start_at), fg='green'))
logging.info(
click.style("Segment created to index: {} latency: {}".format(segment.id, end_at - start_at), fg="green")
)
except Exception as e: except Exception as e:
logging.exception("create segment to index failed") logging.exception("create segment to index failed")
segment.enabled = False segment.enabled = False
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.status = 'error'
segment.status = "error"
segment.error = str(e) segment.error = str(e)
db.session.commit() db.session.commit()
finally: finally:

+ 59
- 43
api/tasks/deal_dataset_vector_index_task.py View File

from models.dataset import Document as DatasetDocument from models.dataset import Document as DatasetDocument




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def deal_dataset_vector_index_task(dataset_id: str, action: str): def deal_dataset_vector_index_task(dataset_id: str, action: str):
""" """
Async deal dataset from index Async deal dataset from index
:param action: action :param action: action
Usage: deal_dataset_vector_index_task.delay(dataset_id, action) Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
""" """
logging.info(click.style('Start deal dataset vector index: {}'.format(dataset_id), fg='green'))
logging.info(click.style("Start deal dataset vector index: {}".format(dataset_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


try: try:
dataset = Dataset.query.filter_by(
id=dataset_id
).first()
dataset = Dataset.query.filter_by(id=dataset_id).first()


if not dataset: if not dataset:
raise Exception('Dataset not found')
raise Exception("Dataset not found")
index_type = dataset.doc_form index_type = dataset.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor() index_processor = IndexProcessorFactory(index_type).init_index_processor()
if action == "remove": if action == "remove":
index_processor.clean(dataset, None, with_keywords=False) index_processor.clean(dataset, None, with_keywords=False)
elif action == "add": elif action == "add":
dataset_documents = db.session.query(DatasetDocument).filter(
DatasetDocument.dataset_id == dataset_id,
DatasetDocument.indexing_status == 'completed',
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).all()
dataset_documents = (
db.session.query(DatasetDocument)
.filter(
DatasetDocument.dataset_id == dataset_id,
DatasetDocument.indexing_status == "completed",
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
)
.all()
)


if dataset_documents: if dataset_documents:
dataset_documents_ids = [doc.id for doc in dataset_documents] dataset_documents_ids = [doc.id for doc in dataset_documents]
db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)) \
.update({"indexing_status": "indexing"}, synchronize_session=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)).update(
{"indexing_status": "indexing"}, synchronize_session=False
)
db.session.commit() db.session.commit()


for dataset_document in dataset_documents: for dataset_document in dataset_documents:
try: try:
# add from vector index # add from vector index
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True
) .order_by(DocumentSegment.position.asc()).all()
segments = (
db.session.query(DocumentSegment)
.filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
.order_by(DocumentSegment.position.asc())
.all()
)
if segments: if segments:
documents = [] documents = []
for segment in segments: for segment in segments:
"doc_hash": segment.index_node_hash, "doc_hash": segment.index_node_hash,
"document_id": segment.document_id, "document_id": segment.document_id,
"dataset_id": segment.dataset_id, "dataset_id": segment.dataset_id,
}
},
) )


documents.append(document) documents.append(document)
# save vector index # save vector index
index_processor.load(dataset, documents, with_keywords=False) index_processor.load(dataset, documents, with_keywords=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id) \
.update({"indexing_status": "completed"}, synchronize_session=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
{"indexing_status": "completed"}, synchronize_session=False
)
db.session.commit() db.session.commit()
except Exception as e: except Exception as e:
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id) \
.update({"indexing_status": "error", "error": str(e)}, synchronize_session=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
{"indexing_status": "error", "error": str(e)}, synchronize_session=False
)
db.session.commit() db.session.commit()
elif action == 'update':
dataset_documents = db.session.query(DatasetDocument).filter(
DatasetDocument.dataset_id == dataset_id,
DatasetDocument.indexing_status == 'completed',
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).all()
elif action == "update":
dataset_documents = (
db.session.query(DatasetDocument)
.filter(
DatasetDocument.dataset_id == dataset_id,
DatasetDocument.indexing_status == "completed",
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
)
.all()
)
# add new index # add new index
if dataset_documents: if dataset_documents:
# update document status # update document status
dataset_documents_ids = [doc.id for doc in dataset_documents] dataset_documents_ids = [doc.id for doc in dataset_documents]
db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)) \
.update({"indexing_status": "indexing"}, synchronize_session=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)).update(
{"indexing_status": "indexing"}, synchronize_session=False
)
db.session.commit() db.session.commit()


# clean index # clean index
for dataset_document in dataset_documents: for dataset_document in dataset_documents:
# update from vector index # update from vector index
try: try:
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True
).order_by(DocumentSegment.position.asc()).all()
segments = (
db.session.query(DocumentSegment)
.filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
.order_by(DocumentSegment.position.asc())
.all()
)
if segments: if segments:
documents = [] documents = []
for segment in segments: for segment in segments:
"doc_hash": segment.index_node_hash, "doc_hash": segment.index_node_hash,
"document_id": segment.document_id, "document_id": segment.document_id,
"dataset_id": segment.dataset_id, "dataset_id": segment.dataset_id,
}
},
) )


documents.append(document) documents.append(document)
# save vector index # save vector index
index_processor.load(dataset, documents, with_keywords=False) index_processor.load(dataset, documents, with_keywords=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id) \
.update({"indexing_status": "completed"}, synchronize_session=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
{"indexing_status": "completed"}, synchronize_session=False
)
db.session.commit() db.session.commit()
except Exception as e: except Exception as e:
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id) \
.update({"indexing_status": "error", "error": str(e)}, synchronize_session=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
{"indexing_status": "error", "error": str(e)}, synchronize_session=False
)
db.session.commit() db.session.commit()



end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('Deal dataset vector index: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
click.style("Deal dataset vector index: {} latency: {}".format(dataset_id, end_at - start_at), fg="green")
)
except Exception: except Exception:
logging.exception("Deal dataset vector index failed") logging.exception("Deal dataset vector index failed")

+ 10
- 8
api/tasks/delete_segment_from_index_task.py View File

from models.dataset import Dataset, Document from models.dataset import Dataset, Document




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def delete_segment_from_index_task(segment_id: str, index_node_id: str, dataset_id: str, document_id: str): def delete_segment_from_index_task(segment_id: str, index_node_id: str, dataset_id: str, document_id: str):
""" """
Async Remove segment from index Async Remove segment from index


Usage: delete_segment_from_index_task.delay(segment_id) Usage: delete_segment_from_index_task.delay(segment_id)
""" """
logging.info(click.style('Start delete segment from index: {}'.format(segment_id), fg='green'))
logging.info(click.style("Start delete segment from index: {}".format(segment_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()
indexing_cache_key = 'segment_{}_delete_indexing'.format(segment_id)
indexing_cache_key = "segment_{}_delete_indexing".format(segment_id)
try: try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset: if not dataset:
logging.info(click.style('Segment {} has no dataset, pass.'.format(segment_id), fg='cyan'))
logging.info(click.style("Segment {} has no dataset, pass.".format(segment_id), fg="cyan"))
return return


dataset_document = db.session.query(Document).filter(Document.id == document_id).first() dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
if not dataset_document: if not dataset_document:
logging.info(click.style('Segment {} has no document, pass.'.format(segment_id), fg='cyan'))
logging.info(click.style("Segment {} has no document, pass.".format(segment_id), fg="cyan"))
return return


if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
logging.info(click.style('Segment {} document status is invalid, pass.'.format(segment_id), fg='cyan'))
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
logging.info(click.style("Segment {} document status is invalid, pass.".format(segment_id), fg="cyan"))
return return


index_type = dataset_document.doc_form index_type = dataset_document.doc_form
index_processor.clean(dataset, [index_node_id]) index_processor.clean(dataset, [index_node_id])


end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style('Segment deleted from index: {} latency: {}'.format(segment_id, end_at - start_at), fg='green'))
logging.info(
click.style("Segment deleted from index: {} latency: {}".format(segment_id, end_at - start_at), fg="green")
)
except Exception: except Exception:
logging.exception("delete segment from index failed") logging.exception("delete segment from index failed")
finally: finally:

+ 13
- 11
api/tasks/disable_segment_from_index_task.py View File

from models.dataset import DocumentSegment from models.dataset import DocumentSegment




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def disable_segment_from_index_task(segment_id: str): def disable_segment_from_index_task(segment_id: str):
""" """
Async disable segment from index Async disable segment from index


Usage: disable_segment_from_index_task.delay(segment_id) Usage: disable_segment_from_index_task.delay(segment_id)
""" """
logging.info(click.style('Start disable segment from index: {}'.format(segment_id), fg='green'))
logging.info(click.style("Start disable segment from index: {}".format(segment_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first() segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first()
if not segment: if not segment:
raise NotFound('Segment not found')
raise NotFound("Segment not found")


if segment.status != 'completed':
raise NotFound('Segment is not completed , disable action is not allowed.')
if segment.status != "completed":
raise NotFound("Segment is not completed , disable action is not allowed.")


indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
indexing_cache_key = "segment_{}_indexing".format(segment.id)


try: try:
dataset = segment.dataset dataset = segment.dataset


if not dataset: if not dataset:
logging.info(click.style('Segment {} has no dataset, pass.'.format(segment.id), fg='cyan'))
logging.info(click.style("Segment {} has no dataset, pass.".format(segment.id), fg="cyan"))
return return


dataset_document = segment.document dataset_document = segment.document


if not dataset_document: if not dataset_document:
logging.info(click.style('Segment {} has no document, pass.'.format(segment.id), fg='cyan'))
logging.info(click.style("Segment {} has no document, pass.".format(segment.id), fg="cyan"))
return return


if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
logging.info(click.style('Segment {} document status is invalid, pass.'.format(segment.id), fg='cyan'))
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
logging.info(click.style("Segment {} document status is invalid, pass.".format(segment.id), fg="cyan"))
return return


index_type = dataset_document.doc_form index_type = dataset_document.doc_form
index_processor.clean(dataset, [segment.index_node_id]) index_processor.clean(dataset, [segment.index_node_id])


end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style('Segment removed from index: {} latency: {}'.format(segment.id, end_at - start_at), fg='green'))
logging.info(
click.style("Segment removed from index: {} latency: {}".format(segment.id, end_at - start_at), fg="green")
)
except Exception: except Exception:
logging.exception("remove segment from index failed") logging.exception("remove segment from index failed")
segment.enabled = True segment.enabled = True

+ 31
- 23
api/tasks/document_indexing_sync_task.py View File

from models.source import DataSourceOauthBinding from models.source import DataSourceOauthBinding




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def document_indexing_sync_task(dataset_id: str, document_id: str): def document_indexing_sync_task(dataset_id: str, document_id: str):
""" """
Async update document Async update document


Usage: document_indexing_sync_task.delay(dataset_id, document_id) Usage: document_indexing_sync_task.delay(dataset_id, document_id)
""" """
logging.info(click.style('Start sync document: {}'.format(document_id), fg='green'))
logging.info(click.style("Start sync document: {}".format(document_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()


if not document: if not document:
raise NotFound('Document not found')
raise NotFound("Document not found")


data_source_info = document.data_source_info_dict data_source_info = document.data_source_info_dict
if document.data_source_type == 'notion_import':
if not data_source_info or 'notion_page_id' not in data_source_info \
or 'notion_workspace_id' not in data_source_info:
if document.data_source_type == "notion_import":
if (
not data_source_info
or "notion_page_id" not in data_source_info
or "notion_workspace_id" not in data_source_info
):
raise ValueError("no notion page found") raise ValueError("no notion page found")
workspace_id = data_source_info['notion_workspace_id']
page_id = data_source_info['notion_page_id']
page_type = data_source_info['type']
page_edited_time = data_source_info['last_edited_time']
workspace_id = data_source_info["notion_workspace_id"]
page_id = data_source_info["notion_page_id"]
page_type = data_source_info["type"]
page_edited_time = data_source_info["last_edited_time"]
data_source_binding = DataSourceOauthBinding.query.filter( data_source_binding = DataSourceOauthBinding.query.filter(
db.and_( db.and_(
DataSourceOauthBinding.tenant_id == document.tenant_id, DataSourceOauthBinding.tenant_id == document.tenant_id,
DataSourceOauthBinding.provider == 'notion',
DataSourceOauthBinding.provider == "notion",
DataSourceOauthBinding.disabled == False, DataSourceOauthBinding.disabled == False,
DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
) )
).first() ).first()
if not data_source_binding: if not data_source_binding:
raise ValueError('Data source binding not found.')
raise ValueError("Data source binding not found.")


loader = NotionExtractor( loader = NotionExtractor(
notion_workspace_id=workspace_id, notion_workspace_id=workspace_id,
notion_obj_id=page_id, notion_obj_id=page_id,
notion_page_type=page_type, notion_page_type=page_type,
notion_access_token=data_source_binding.access_token, notion_access_token=data_source_binding.access_token,
tenant_id=document.tenant_id
tenant_id=document.tenant_id,
) )


last_edited_time = loader.get_notion_last_edited_time() last_edited_time = loader.get_notion_last_edited_time()


# check the page is updated # check the page is updated
if last_edited_time != page_edited_time: if last_edited_time != page_edited_time:
document.indexing_status = 'parsing'
document.indexing_status = "parsing"
document.processing_started_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) document.processing_started_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.commit() db.session.commit()


try: try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset: if not dataset:
raise Exception('Dataset not found')
raise Exception("Dataset not found")
index_type = document.doc_form index_type = document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor() index_processor = IndexProcessorFactory(index_type).init_index_processor()




end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('Cleaned document when document update data source or process rule: {} latency: {}'.format(document_id, end_at - start_at), fg='green'))
click.style(
"Cleaned document when document update data source or process rule: {} latency: {}".format(
document_id, end_at - start_at
),
fg="green",
)
)
except Exception: except Exception:
logging.exception("Cleaned document when document update data source or process rule failed") logging.exception("Cleaned document when document update data source or process rule failed")


indexing_runner = IndexingRunner() indexing_runner = IndexingRunner()
indexing_runner.run([document]) indexing_runner.run([document])
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style('update document: {} latency: {}'.format(document.id, end_at - start_at), fg='green'))
logging.info(
click.style("update document: {} latency: {}".format(document.id, end_at - start_at), fg="green")
)
except DocumentIsPausedException as ex: except DocumentIsPausedException as ex:
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
except Exception: except Exception:
pass pass

+ 16
- 16
api/tasks/document_indexing_task.py View File

from services.feature_service import FeatureService from services.feature_service import FeatureService




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def document_indexing_task(dataset_id: str, document_ids: list): def document_indexing_task(dataset_id: str, document_ids: list):
""" """
Async process document Async process document
if count > batch_upload_limit: if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
if 0 < vector_space.limit <= vector_space.size: if 0 < vector_space.limit <= vector_space.size:
raise ValueError("Your total number of documents plus the number of uploads have over the limit of "
"your subscription.")
raise ValueError(
"Your total number of documents plus the number of uploads have over the limit of "
"your subscription."
)
except Exception as e: except Exception as e:
for document_id in document_ids: for document_id in document_ids:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
if document: if document:
document.indexing_status = 'error'
document.indexing_status = "error"
document.error = str(e) document.error = str(e)
document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.add(document) db.session.add(document)
return return


for document_id in document_ids: for document_id in document_ids:
logging.info(click.style('Start process document: {}'.format(document_id), fg='green'))
logging.info(click.style("Start process document: {}".format(document_id), fg="green"))


document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)


if document: if document:
document.indexing_status = 'parsing'
document.indexing_status = "parsing"
document.processing_started_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) document.processing_started_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
documents.append(document) documents.append(document)
db.session.add(document) db.session.add(document)
indexing_runner = IndexingRunner() indexing_runner = IndexingRunner()
indexing_runner.run(documents) indexing_runner.run(documents)
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style('Processed dataset: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))
except DocumentIsPausedException as ex: except DocumentIsPausedException as ex:
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
except Exception: except Exception:
pass pass

+ 15
- 12
api/tasks/document_indexing_update_task.py View File

from models.dataset import Dataset, Document, DocumentSegment from models.dataset import Dataset, Document, DocumentSegment




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def document_indexing_update_task(dataset_id: str, document_id: str): def document_indexing_update_task(dataset_id: str, document_id: str):
""" """
Async update document Async update document


Usage: document_indexing_update_task.delay(dataset_id, document_id) Usage: document_indexing_update_task.delay(dataset_id, document_id)
""" """
logging.info(click.style('Start update document: {}'.format(document_id), fg='green'))
logging.info(click.style("Start update document: {}".format(document_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()


if not document: if not document:
raise NotFound('Document not found')
raise NotFound("Document not found")


document.indexing_status = 'parsing'
document.indexing_status = "parsing"
document.processing_started_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) document.processing_started_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.commit() db.session.commit()


try: try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset: if not dataset:
raise Exception('Dataset not found')
raise Exception("Dataset not found")


index_type = document.doc_form index_type = document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor() index_processor = IndexProcessorFactory(index_type).init_index_processor()
db.session.commit() db.session.commit()
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('Cleaned document when document update data source or process rule: {} latency: {}'.format(document_id, end_at - start_at), fg='green'))
click.style(
"Cleaned document when document update data source or process rule: {} latency: {}".format(
document_id, end_at - start_at
),
fg="green",
)
)
except Exception: except Exception:
logging.exception("Cleaned document when document update data source or process rule failed") logging.exception("Cleaned document when document update data source or process rule failed")


indexing_runner = IndexingRunner() indexing_runner = IndexingRunner()
indexing_runner.run([document]) indexing_runner.run([document])
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style('update document: {} latency: {}'.format(document.id, end_at - start_at), fg='green'))
logging.info(click.style("update document: {} latency: {}".format(document.id, end_at - start_at), fg="green"))
except DocumentIsPausedException as ex: except DocumentIsPausedException as ex:
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
except Exception: except Exception:
pass pass

+ 16
- 16
api/tasks/duplicate_document_indexing_task.py View File

from services.feature_service import FeatureService from services.feature_service import FeatureService




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def duplicate_document_indexing_task(dataset_id: str, document_ids: list): def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
""" """
Async process document Async process document
if count > batch_upload_limit: if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
if 0 < vector_space.limit <= vector_space.size: if 0 < vector_space.limit <= vector_space.size:
raise ValueError("Your total number of documents plus the number of uploads have over the limit of "
"your subscription.")
raise ValueError(
"Your total number of documents plus the number of uploads have over the limit of "
"your subscription."
)
except Exception as e: except Exception as e:
for document_id in document_ids: for document_id in document_ids:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
if document: if document:
document.indexing_status = 'error'
document.indexing_status = "error"
document.error = str(e) document.error = str(e)
document.stopped_at = datetime.datetime.utcnow() document.stopped_at = datetime.datetime.utcnow()
db.session.add(document) db.session.add(document)
return return


for document_id in document_ids: for document_id in document_ids:
logging.info(click.style('Start process document: {}'.format(document_id), fg='green'))
logging.info(click.style("Start process document: {}".format(document_id), fg="green"))


document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)


if document: if document:
# clean old data # clean old data
db.session.delete(segment) db.session.delete(segment)
db.session.commit() db.session.commit()


document.indexing_status = 'parsing'
document.indexing_status = "parsing"
document.processing_started_at = datetime.datetime.utcnow() document.processing_started_at = datetime.datetime.utcnow()
documents.append(document) documents.append(document)
db.session.add(document) db.session.add(document)
indexing_runner = IndexingRunner() indexing_runner = IndexingRunner()
indexing_runner.run(documents) indexing_runner.run(documents)
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style('Processed dataset: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))
except DocumentIsPausedException as ex: except DocumentIsPausedException as ex:
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
except Exception: except Exception:
pass pass

+ 15
- 13
api/tasks/enable_segment_to_index_task.py View File

from models.dataset import DocumentSegment from models.dataset import DocumentSegment




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def enable_segment_to_index_task(segment_id: str): def enable_segment_to_index_task(segment_id: str):
""" """
Async enable segment to index Async enable segment to index


Usage: enable_segment_to_index_task.delay(segment_id) Usage: enable_segment_to_index_task.delay(segment_id)
""" """
logging.info(click.style('Start enable segment to index: {}'.format(segment_id), fg='green'))
logging.info(click.style("Start enable segment to index: {}".format(segment_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first() segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first()
if not segment: if not segment:
raise NotFound('Segment not found')
raise NotFound("Segment not found")


if segment.status != 'completed':
raise NotFound('Segment is not completed, enable action is not allowed.')
if segment.status != "completed":
raise NotFound("Segment is not completed, enable action is not allowed.")


indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
indexing_cache_key = "segment_{}_indexing".format(segment.id)


try: try:
document = Document( document = Document(
"doc_hash": segment.index_node_hash, "doc_hash": segment.index_node_hash,
"document_id": segment.document_id, "document_id": segment.document_id,
"dataset_id": segment.dataset_id, "dataset_id": segment.dataset_id,
}
},
) )


dataset = segment.dataset dataset = segment.dataset


if not dataset: if not dataset:
logging.info(click.style('Segment {} has no dataset, pass.'.format(segment.id), fg='cyan'))
logging.info(click.style("Segment {} has no dataset, pass.".format(segment.id), fg="cyan"))
return return


dataset_document = segment.document dataset_document = segment.document


if not dataset_document: if not dataset_document:
logging.info(click.style('Segment {} has no document, pass.'.format(segment.id), fg='cyan'))
logging.info(click.style("Segment {} has no document, pass.".format(segment.id), fg="cyan"))
return return


if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
logging.info(click.style('Segment {} document status is invalid, pass.'.format(segment.id), fg='cyan'))
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
logging.info(click.style("Segment {} document status is invalid, pass.".format(segment.id), fg="cyan"))
return return


index_processor = IndexProcessorFactory(dataset_document.doc_form).init_index_processor() index_processor = IndexProcessorFactory(dataset_document.doc_form).init_index_processor()
index_processor.load(dataset, [document]) index_processor.load(dataset, [document])


end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style('Segment enabled to index: {} latency: {}'.format(segment.id, end_at - start_at), fg='green'))
logging.info(
click.style("Segment enabled to index: {} latency: {}".format(segment.id, end_at - start_at), fg="green")
)
except Exception as e: except Exception as e:
logging.exception("enable segment to index failed") logging.exception("enable segment to index failed")
segment.enabled = False segment.enabled = False
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.status = 'error'
segment.status = "error"
segment.error = str(e) segment.error = str(e)
db.session.commit() db.session.commit()
finally: finally:

+ 25
- 18
api/tasks/mail_invite_member_task.py View File

from extensions.ext_mail import mail from extensions.ext_mail import mail




@shared_task(queue='mail')
@shared_task(queue="mail")
def send_invite_member_mail_task(language: str, to: str, token: str, inviter_name: str, workspace_name: str): def send_invite_member_mail_task(language: str, to: str, token: str, inviter_name: str, workspace_name: str):
""" """
Async Send invite member mail Async Send invite member mail
if not mail.is_inited(): if not mail.is_inited():
return return


logging.info(click.style('Start send invite member mail to {} in workspace {}'.format(to, workspace_name),
fg='green'))
logging.info(
click.style("Start send invite member mail to {} in workspace {}".format(to, workspace_name), fg="green")
)
start_at = time.perf_counter() start_at = time.perf_counter()


# send invite member mail using different languages # send invite member mail using different languages
try: try:
url = f'{dify_config.CONSOLE_WEB_URL}/activate?token={token}'
if language == 'zh-Hans':
html_content = render_template('invite_member_mail_template_zh-CN.html',
to=to,
inviter_name=inviter_name,
workspace_name=workspace_name,
url=url)
url = f"{dify_config.CONSOLE_WEB_URL}/activate?token={token}"
if language == "zh-Hans":
html_content = render_template(
"invite_member_mail_template_zh-CN.html",
to=to,
inviter_name=inviter_name,
workspace_name=workspace_name,
url=url,
)
mail.send(to=to, subject="立即加入 Dify 工作空间", html=html_content) mail.send(to=to, subject="立即加入 Dify 工作空间", html=html_content)
else: else:
html_content = render_template('invite_member_mail_template_en-US.html',
to=to,
inviter_name=inviter_name,
workspace_name=workspace_name,
url=url)
html_content = render_template(
"invite_member_mail_template_en-US.html",
to=to,
inviter_name=inviter_name,
workspace_name=workspace_name,
url=url,
)
mail.send(to=to, subject="Join Dify Workspace Now", html=html_content) mail.send(to=to, subject="Join Dify Workspace Now", html=html_content)


end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('Send invite member mail to {} succeeded: latency: {}'.format(to, end_at - start_at),
fg='green'))
click.style(
"Send invite member mail to {} succeeded: latency: {}".format(to, end_at - start_at), fg="green"
)
)
except Exception: except Exception:
logging.exception("Send invite member mail to {} failed".format(to))
logging.exception("Send invite member mail to {} failed".format(to))

+ 10
- 12
api/tasks/mail_reset_password_task.py View File

from extensions.ext_mail import mail from extensions.ext_mail import mail




@shared_task(queue='mail')
@shared_task(queue="mail")
def send_reset_password_mail_task(language: str, to: str, token: str): def send_reset_password_mail_task(language: str, to: str, token: str):
""" """
Async Send reset password mail Async Send reset password mail
if not mail.is_inited(): if not mail.is_inited():
return return


logging.info(click.style('Start password reset mail to {}'.format(to), fg='green'))
logging.info(click.style("Start password reset mail to {}".format(to), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


# send reset password mail using different languages # send reset password mail using different languages
try: try:
url = f'{dify_config.CONSOLE_WEB_URL}/forgot-password?token={token}'
if language == 'zh-Hans':
html_content = render_template('reset_password_mail_template_zh-CN.html',
to=to,
url=url)
url = f"{dify_config.CONSOLE_WEB_URL}/forgot-password?token={token}"
if language == "zh-Hans":
html_content = render_template("reset_password_mail_template_zh-CN.html", to=to, url=url)
mail.send(to=to, subject="重置您的 Dify 密码", html=html_content) mail.send(to=to, subject="重置您的 Dify 密码", html=html_content)
else: else:
html_content = render_template('reset_password_mail_template_en-US.html',
to=to,
url=url)
html_content = render_template("reset_password_mail_template_en-US.html", to=to, url=url)
mail.send(to=to, subject="Reset Your Dify Password", html=html_content) mail.send(to=to, subject="Reset Your Dify Password", html=html_content)


end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('Send password reset mail to {} succeeded: latency: {}'.format(to, end_at - start_at),
fg='green'))
click.style(
"Send password reset mail to {} succeeded: latency: {}".format(to, end_at - start_at), fg="green"
)
)
except Exception: except Exception:
logging.exception("Send password reset mail to {} failed".format(to)) logging.exception("Send password reset mail to {} failed".format(to))

+ 10
- 10
api/tasks/ops_trace_task.py View File

from models.workflow import WorkflowRun from models.workflow import WorkflowRun




@shared_task(queue='ops_trace')
@shared_task(queue="ops_trace")
def process_trace_tasks(tasks_data): def process_trace_tasks(tasks_data):
""" """
Async process trace tasks Async process trace tasks
""" """
from core.ops.ops_trace_manager import OpsTraceManager from core.ops.ops_trace_manager import OpsTraceManager


trace_info = tasks_data.get('trace_info')
app_id = tasks_data.get('app_id')
trace_info_type = tasks_data.get('trace_info_type')
trace_info = tasks_data.get("trace_info")
app_id = tasks_data.get("app_id")
trace_info_type = tasks_data.get("trace_info_type")
trace_instance = OpsTraceManager.get_ops_trace_instance(app_id) trace_instance = OpsTraceManager.get_ops_trace_instance(app_id)


if trace_info.get('message_data'):
trace_info['message_data'] = Message.from_dict(data=trace_info['message_data'])
if trace_info.get('workflow_data'):
trace_info['workflow_data'] = WorkflowRun.from_dict(data=trace_info['workflow_data'])
if trace_info.get('documents'):
trace_info['documents'] = [Document(**doc) for doc in trace_info['documents']]
if trace_info.get("message_data"):
trace_info["message_data"] = Message.from_dict(data=trace_info["message_data"])
if trace_info.get("workflow_data"):
trace_info["workflow_data"] = WorkflowRun.from_dict(data=trace_info["workflow_data"])
if trace_info.get("documents"):
trace_info["documents"] = [Document(**doc) for doc in trace_info["documents"]]


try: try:
if trace_instance: if trace_instance:

+ 8
- 9
api/tasks/recover_document_indexing_task.py View File

from models.dataset import Document from models.dataset import Document




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def recover_document_indexing_task(dataset_id: str, document_id: str): def recover_document_indexing_task(dataset_id: str, document_id: str):
""" """
Async recover document Async recover document


Usage: recover_document_indexing_task.delay(dataset_id, document_id) Usage: recover_document_indexing_task.delay(dataset_id, document_id)
""" """
logging.info(click.style('Recover document: {}'.format(document_id), fg='green'))
logging.info(click.style("Recover document: {}".format(document_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()


if not document: if not document:
raise NotFound('Document not found')
raise NotFound("Document not found")


try: try:
indexing_runner = IndexingRunner() indexing_runner = IndexingRunner()
elif document.indexing_status == "indexing": elif document.indexing_status == "indexing":
indexing_runner.run_in_indexing_status(document) indexing_runner.run_in_indexing_status(document)
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style('Processed document: {} latency: {}'.format(document.id, end_at - start_at), fg='green'))
logging.info(
click.style("Processed document: {} latency: {}".format(document.id, end_at - start_at), fg="green")
)
except DocumentIsPausedException as ex: except DocumentIsPausedException as ex:
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
except Exception: except Exception:
pass pass

+ 53
- 52
api/tasks/remove_app_and_related_data_task.py View File

from models.workflow import ConversationVariable, Workflow, WorkflowAppLog, WorkflowNodeExecution, WorkflowRun from models.workflow import ConversationVariable, Workflow, WorkflowAppLog, WorkflowNodeExecution, WorkflowRun




@shared_task(queue='app_deletion', bind=True, max_retries=3)
@shared_task(queue="app_deletion", bind=True, max_retries=3)
def remove_app_and_related_data_task(self, tenant_id: str, app_id: str): def remove_app_and_related_data_task(self, tenant_id: str, app_id: str):
logging.info(click.style(f'Start deleting app and related data: {tenant_id}:{app_id}', fg='green'))
logging.info(click.style(f"Start deleting app and related data: {tenant_id}:{app_id}", fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()
try: try:
# Delete related data # Delete related data
_delete_conversation_variables(app_id=app_id) _delete_conversation_variables(app_id=app_id)


end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style(f'App and related data deleted: {app_id} latency: {end_at - start_at}', fg='green'))
logging.info(click.style(f"App and related data deleted: {app_id} latency: {end_at - start_at}", fg="green"))
except SQLAlchemyError as e: except SQLAlchemyError as e:
logging.exception( logging.exception(
click.style(f"Database error occurred while deleting app {app_id} and related data", fg='red'))
click.style(f"Database error occurred while deleting app {app_id} and related data", fg="red")
)
raise self.retry(exc=e, countdown=60) # Retry after 60 seconds raise self.retry(exc=e, countdown=60) # Retry after 60 seconds
except Exception as e: except Exception as e:
logging.exception(click.style(f"Error occurred while deleting app {app_id} and related data", fg='red'))
logging.exception(click.style(f"Error occurred while deleting app {app_id} and related data", fg="red"))
raise self.retry(exc=e, countdown=60) # Retry after 60 seconds raise self.retry(exc=e, countdown=60) # Retry after 60 seconds




"""select id from app_model_configs where app_id=:app_id limit 1000""", """select id from app_model_configs where app_id=:app_id limit 1000""",
{"app_id": app_id}, {"app_id": app_id},
del_model_config, del_model_config,
"app model config"
"app model config",
) )




def del_site(site_id: str): def del_site(site_id: str):
db.session.query(Site).filter(Site.id == site_id).delete(synchronize_session=False) db.session.query(Site).filter(Site.id == site_id).delete(synchronize_session=False)


_delete_records(
"""select id from sites where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_site,
"site"
)
_delete_records("""select id from sites where app_id=:app_id limit 1000""", {"app_id": app_id}, del_site, "site")




def _delete_app_api_tokens(tenant_id: str, app_id: str): def _delete_app_api_tokens(tenant_id: str, app_id: str):
db.session.query(ApiToken).filter(ApiToken.id == api_token_id).delete(synchronize_session=False) db.session.query(ApiToken).filter(ApiToken.id == api_token_id).delete(synchronize_session=False)


_delete_records( _delete_records(
"""select id from api_tokens where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_api_token,
"api token"
"""select id from api_tokens where app_id=:app_id limit 1000""", {"app_id": app_id}, del_api_token, "api token"
) )




"""select id from installed_apps where tenant_id=:tenant_id and app_id=:app_id limit 1000""", """select id from installed_apps where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id}, {"tenant_id": tenant_id, "app_id": app_id},
del_installed_app, del_installed_app,
"installed app"
"installed app",
) )




def _delete_recommended_apps(tenant_id: str, app_id: str): def _delete_recommended_apps(tenant_id: str, app_id: str):
def del_recommended_app(recommended_app_id: str): def del_recommended_app(recommended_app_id: str):
db.session.query(RecommendedApp).filter(RecommendedApp.id == recommended_app_id).delete( db.session.query(RecommendedApp).filter(RecommendedApp.id == recommended_app_id).delete(
synchronize_session=False)
synchronize_session=False
)


_delete_records( _delete_records(
"""select id from recommended_apps where app_id=:app_id limit 1000""", """select id from recommended_apps where app_id=:app_id limit 1000""",
{"app_id": app_id}, {"app_id": app_id},
del_recommended_app, del_recommended_app,
"recommended app"
"recommended app",
) )




def _delete_app_annotation_data(tenant_id: str, app_id: str): def _delete_app_annotation_data(tenant_id: str, app_id: str):
def del_annotation_hit_history(annotation_hit_history_id: str): def del_annotation_hit_history(annotation_hit_history_id: str):
db.session.query(AppAnnotationHitHistory).filter( db.session.query(AppAnnotationHitHistory).filter(
AppAnnotationHitHistory.id == annotation_hit_history_id).delete(synchronize_session=False)
AppAnnotationHitHistory.id == annotation_hit_history_id
).delete(synchronize_session=False)


_delete_records( _delete_records(
"""select id from app_annotation_hit_histories where app_id=:app_id limit 1000""", """select id from app_annotation_hit_histories where app_id=:app_id limit 1000""",
{"app_id": app_id}, {"app_id": app_id},
del_annotation_hit_history, del_annotation_hit_history,
"annotation hit history"
"annotation hit history",
) )


def del_annotation_setting(annotation_setting_id: str): def del_annotation_setting(annotation_setting_id: str):
db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.id == annotation_setting_id).delete( db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.id == annotation_setting_id).delete(
synchronize_session=False)
synchronize_session=False
)


_delete_records( _delete_records(
"""select id from app_annotation_settings where app_id=:app_id limit 1000""", """select id from app_annotation_settings where app_id=:app_id limit 1000""",
{"app_id": app_id}, {"app_id": app_id},
del_annotation_setting, del_annotation_setting,
"annotation setting"
"annotation setting",
) )




"""select id from app_dataset_joins where app_id=:app_id limit 1000""", """select id from app_dataset_joins where app_id=:app_id limit 1000""",
{"app_id": app_id}, {"app_id": app_id},
del_dataset_join, del_dataset_join,
"dataset join"
"dataset join",
) )




"""select id from workflows where tenant_id=:tenant_id and app_id=:app_id limit 1000""", """select id from workflows where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id}, {"tenant_id": tenant_id, "app_id": app_id},
del_workflow, del_workflow,
"workflow"
"workflow",
) )




"""select id from workflow_runs where tenant_id=:tenant_id and app_id=:app_id limit 1000""", """select id from workflow_runs where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id}, {"tenant_id": tenant_id, "app_id": app_id},
del_workflow_run, del_workflow_run,
"workflow run"
"workflow run",
) )




def _delete_app_workflow_node_executions(tenant_id: str, app_id: str): def _delete_app_workflow_node_executions(tenant_id: str, app_id: str):
def del_workflow_node_execution(workflow_node_execution_id: str): def del_workflow_node_execution(workflow_node_execution_id: str):
db.session.query(WorkflowNodeExecution).filter(
WorkflowNodeExecution.id == workflow_node_execution_id).delete(synchronize_session=False)
db.session.query(WorkflowNodeExecution).filter(WorkflowNodeExecution.id == workflow_node_execution_id).delete(
synchronize_session=False
)


_delete_records( _delete_records(
"""select id from workflow_node_executions where tenant_id=:tenant_id and app_id=:app_id limit 1000""", """select id from workflow_node_executions where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id}, {"tenant_id": tenant_id, "app_id": app_id},
del_workflow_node_execution, del_workflow_node_execution,
"workflow node execution"
"workflow node execution",
) )




def _delete_app_workflow_app_logs(tenant_id: str, app_id: str): def _delete_app_workflow_app_logs(tenant_id: str, app_id: str):
def del_workflow_app_log(workflow_app_log_id: str): def del_workflow_app_log(workflow_app_log_id: str):
db.session.query(WorkflowAppLog).filter(WorkflowAppLog.id == workflow_app_log_id).delete(synchronize_session=False)
db.session.query(WorkflowAppLog).filter(WorkflowAppLog.id == workflow_app_log_id).delete(
synchronize_session=False
)


_delete_records( _delete_records(
"""select id from workflow_app_logs where tenant_id=:tenant_id and app_id=:app_id limit 1000""", """select id from workflow_app_logs where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id}, {"tenant_id": tenant_id, "app_id": app_id},
del_workflow_app_log, del_workflow_app_log,
"workflow app log"
"workflow app log",
) )




def _delete_app_conversations(tenant_id: str, app_id: str): def _delete_app_conversations(tenant_id: str, app_id: str):
def del_conversation(conversation_id: str): def del_conversation(conversation_id: str):
db.session.query(PinnedConversation).filter(PinnedConversation.conversation_id == conversation_id).delete( db.session.query(PinnedConversation).filter(PinnedConversation.conversation_id == conversation_id).delete(
synchronize_session=False)
synchronize_session=False
)
db.session.query(Conversation).filter(Conversation.id == conversation_id).delete(synchronize_session=False) db.session.query(Conversation).filter(Conversation.id == conversation_id).delete(synchronize_session=False)


_delete_records( _delete_records(
"""select id from conversations where app_id=:app_id limit 1000""", """select id from conversations where app_id=:app_id limit 1000""",
{"app_id": app_id}, {"app_id": app_id},
del_conversation, del_conversation,
"conversation"
"conversation",
) )



def _delete_conversation_variables(*, app_id: str): def _delete_conversation_variables(*, app_id: str):
stmt = delete(ConversationVariable).where(ConversationVariable.app_id == app_id) stmt = delete(ConversationVariable).where(ConversationVariable.app_id == app_id)
with db.engine.connect() as conn: with db.engine.connect() as conn:
conn.execute(stmt) conn.execute(stmt)
conn.commit() conn.commit()
logging.info(click.style(f"Deleted conversation variables for app {app_id}", fg='green'))
logging.info(click.style(f"Deleted conversation variables for app {app_id}", fg="green"))




def _delete_app_messages(tenant_id: str, app_id: str): def _delete_app_messages(tenant_id: str, app_id: str):
def del_message(message_id: str): def del_message(message_id: str):
db.session.query(MessageFeedback).filter(MessageFeedback.message_id == message_id).delete( db.session.query(MessageFeedback).filter(MessageFeedback.message_id == message_id).delete(
synchronize_session=False)
synchronize_session=False
)
db.session.query(MessageAnnotation).filter(MessageAnnotation.message_id == message_id).delete( db.session.query(MessageAnnotation).filter(MessageAnnotation.message_id == message_id).delete(
synchronize_session=False)
db.session.query(MessageChain).filter(MessageChain.message_id == message_id).delete(
synchronize_session=False)
synchronize_session=False
)
db.session.query(MessageChain).filter(MessageChain.message_id == message_id).delete(synchronize_session=False)
db.session.query(MessageAgentThought).filter(MessageAgentThought.message_id == message_id).delete( db.session.query(MessageAgentThought).filter(MessageAgentThought.message_id == message_id).delete(
synchronize_session=False)
synchronize_session=False
)
db.session.query(MessageFile).filter(MessageFile.message_id == message_id).delete(synchronize_session=False) db.session.query(MessageFile).filter(MessageFile.message_id == message_id).delete(synchronize_session=False)
db.session.query(SavedMessage).filter(SavedMessage.message_id == message_id).delete(
synchronize_session=False)
db.session.query(SavedMessage).filter(SavedMessage.message_id == message_id).delete(synchronize_session=False)
db.session.query(Message).filter(Message.id == message_id).delete() db.session.query(Message).filter(Message.id == message_id).delete()


_delete_records( _delete_records(
"""select id from messages where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_message,
"message"
"""select id from messages where app_id=:app_id limit 1000""", {"app_id": app_id}, del_message, "message"
) )




def _delete_workflow_tool_providers(tenant_id: str, app_id: str): def _delete_workflow_tool_providers(tenant_id: str, app_id: str):
def del_tool_provider(tool_provider_id: str): def del_tool_provider(tool_provider_id: str):
db.session.query(WorkflowToolProvider).filter(WorkflowToolProvider.id == tool_provider_id).delete( db.session.query(WorkflowToolProvider).filter(WorkflowToolProvider.id == tool_provider_id).delete(
synchronize_session=False)
synchronize_session=False
)


_delete_records( _delete_records(
"""select id from tool_workflow_providers where tenant_id=:tenant_id and app_id=:app_id limit 1000""", """select id from tool_workflow_providers where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id}, {"tenant_id": tenant_id, "app_id": app_id},
del_tool_provider, del_tool_provider,
"tool workflow provider"
"tool workflow provider",
) )




"""select id from tag_bindings where tenant_id=:tenant_id and target_id=:app_id limit 1000""", """select id from tag_bindings where tenant_id=:tenant_id and target_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id}, {"tenant_id": tenant_id, "app_id": app_id},
del_tag_binding, del_tag_binding,
"tag binding"
"tag binding",
) )




"""select id from end_users where tenant_id=:tenant_id and app_id=:app_id limit 1000""", """select id from end_users where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id}, {"tenant_id": tenant_id, "app_id": app_id},
del_end_user, del_end_user,
"end user"
"end user",
) )




def _delete_trace_app_configs(tenant_id: str, app_id: str): def _delete_trace_app_configs(tenant_id: str, app_id: str):
def del_trace_app_config(trace_app_config_id: str): def del_trace_app_config(trace_app_config_id: str):
db.session.query(TraceAppConfig).filter(TraceAppConfig.id == trace_app_config_id).delete( db.session.query(TraceAppConfig).filter(TraceAppConfig.id == trace_app_config_id).delete(
synchronize_session=False)
synchronize_session=False
)


_delete_records( _delete_records(
"""select id from trace_app_config where app_id=:app_id limit 1000""", """select id from trace_app_config where app_id=:app_id limit 1000""",
{"app_id": app_id}, {"app_id": app_id},
del_trace_app_config, del_trace_app_config,
"trace app config"
"trace app config",
) )




try: try:
delete_func(record_id) delete_func(record_id)
db.session.commit() db.session.commit()
logging.info(click.style(f"Deleted {name} {record_id}", fg='green'))
logging.info(click.style(f"Deleted {name} {record_id}", fg="green"))
except Exception: except Exception:
logging.exception(f"Error occurred while deleting {name} {record_id}") logging.exception(f"Error occurred while deleting {name} {record_id}")
continue continue

+ 10
- 7
api/tasks/remove_document_from_index_task.py View File

from models.dataset import Document, DocumentSegment from models.dataset import Document, DocumentSegment




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def remove_document_from_index_task(document_id: str): def remove_document_from_index_task(document_id: str):
""" """
Async Remove document from index Async Remove document from index


Usage: remove_document_from_index.delay(document_id) Usage: remove_document_from_index.delay(document_id)
""" """
logging.info(click.style('Start remove document segments from index: {}'.format(document_id), fg='green'))
logging.info(click.style("Start remove document segments from index: {}".format(document_id), fg="green"))
start_at = time.perf_counter() start_at = time.perf_counter()


document = db.session.query(Document).filter(Document.id == document_id).first() document = db.session.query(Document).filter(Document.id == document_id).first()
if not document: if not document:
raise NotFound('Document not found')
raise NotFound("Document not found")


if document.indexing_status != 'completed':
if document.indexing_status != "completed":
return return


indexing_cache_key = 'document_{}_indexing'.format(document.id)
indexing_cache_key = "document_{}_indexing".format(document.id)


try: try:
dataset = document.dataset dataset = document.dataset


if not dataset: if not dataset:
raise Exception('Document has no dataset')
raise Exception("Document has no dataset")


index_processor = IndexProcessorFactory(document.doc_form).init_index_processor() index_processor = IndexProcessorFactory(document.doc_form).init_index_processor()




end_at = time.perf_counter() end_at = time.perf_counter()
logging.info( logging.info(
click.style('Document removed from index: {} latency: {}'.format(document.id, end_at - start_at), fg='green'))
click.style(
"Document removed from index: {} latency: {}".format(document.id, end_at - start_at), fg="green"
)
)
except Exception: except Exception:
logging.exception("remove document from index failed") logging.exception("remove document from index failed")
if not document.archived: if not document.archived:

+ 18
- 18
api/tasks/retry_document_indexing_task.py View File

from services.feature_service import FeatureService from services.feature_service import FeatureService




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def retry_document_indexing_task(dataset_id: str, document_ids: list[str]): def retry_document_indexing_task(dataset_id: str, document_ids: list[str]):
""" """
Async process document Async process document


dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
for document_id in document_ids: for document_id in document_ids:
retry_indexing_cache_key = 'document_{}_is_retried'.format(document_id)
retry_indexing_cache_key = "document_{}_is_retried".format(document_id)
# check document limit # check document limit
features = FeatureService.get_features(dataset.tenant_id) features = FeatureService.get_features(dataset.tenant_id)
try: try:
if features.billing.enabled: if features.billing.enabled:
vector_space = features.vector_space vector_space = features.vector_space
if 0 < vector_space.limit <= vector_space.size: if 0 < vector_space.limit <= vector_space.size:
raise ValueError("Your total number of documents plus the number of uploads have over the limit of "
"your subscription.")
raise ValueError(
"Your total number of documents plus the number of uploads have over the limit of "
"your subscription."
)
except Exception as e: except Exception as e:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
if document: if document:
document.indexing_status = 'error'
document.indexing_status = "error"
document.error = str(e) document.error = str(e)
document.stopped_at = datetime.datetime.utcnow() document.stopped_at = datetime.datetime.utcnow()
db.session.add(document) db.session.add(document)
redis_client.delete(retry_indexing_cache_key) redis_client.delete(retry_indexing_cache_key)
return return


logging.info(click.style('Start retry document: {}'.format(document_id), fg='green'))
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
logging.info(click.style("Start retry document: {}".format(document_id), fg="green"))
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
try: try:
if document: if document:
# clean old data # clean old data
db.session.delete(segment) db.session.delete(segment)
db.session.commit() db.session.commit()


document.indexing_status = 'parsing'
document.indexing_status = "parsing"
document.processing_started_at = datetime.datetime.utcnow() document.processing_started_at = datetime.datetime.utcnow()
db.session.add(document) db.session.add(document)
db.session.commit() db.session.commit()
indexing_runner.run([document]) indexing_runner.run([document])
redis_client.delete(retry_indexing_cache_key) redis_client.delete(retry_indexing_cache_key)
except Exception as ex: except Exception as ex:
document.indexing_status = 'error'
document.indexing_status = "error"
document.error = str(ex) document.error = str(ex)
document.stopped_at = datetime.datetime.utcnow() document.stopped_at = datetime.datetime.utcnow()
db.session.add(document) db.session.add(document)
db.session.commit() db.session.commit()
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
redis_client.delete(retry_indexing_cache_key) redis_client.delete(retry_indexing_cache_key)
pass pass
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style('Retry dataset: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
logging.info(click.style("Retry dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))

+ 16
- 18
api/tasks/sync_website_document_indexing_task.py View File

from services.feature_service import FeatureService from services.feature_service import FeatureService




@shared_task(queue='dataset')
@shared_task(queue="dataset")
def sync_website_document_indexing_task(dataset_id: str, document_id: str): def sync_website_document_indexing_task(dataset_id: str, document_id: str):
""" """
Async process document Async process document


dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()


sync_indexing_cache_key = 'document_{}_is_sync'.format(document_id)
sync_indexing_cache_key = "document_{}_is_sync".format(document_id)
# check document limit # check document limit
features = FeatureService.get_features(dataset.tenant_id) features = FeatureService.get_features(dataset.tenant_id)
try: try:
if features.billing.enabled: if features.billing.enabled:
vector_space = features.vector_space vector_space = features.vector_space
if 0 < vector_space.limit <= vector_space.size: if 0 < vector_space.limit <= vector_space.size:
raise ValueError("Your total number of documents plus the number of uploads have over the limit of "
"your subscription.")
raise ValueError(
"Your total number of documents plus the number of uploads have over the limit of "
"your subscription."
)
except Exception as e: except Exception as e:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
if document: if document:
document.indexing_status = 'error'
document.indexing_status = "error"
document.error = str(e) document.error = str(e)
document.stopped_at = datetime.datetime.utcnow() document.stopped_at = datetime.datetime.utcnow()
db.session.add(document) db.session.add(document)
redis_client.delete(sync_indexing_cache_key) redis_client.delete(sync_indexing_cache_key)
return return


logging.info(click.style('Start sync website document: {}'.format(document_id), fg='green'))
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
logging.info(click.style("Start sync website document: {}".format(document_id), fg="green"))
document = db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
try: try:
if document: if document:
# clean old data # clean old data
db.session.delete(segment) db.session.delete(segment)
db.session.commit() db.session.commit()


document.indexing_status = 'parsing'
document.indexing_status = "parsing"
document.processing_started_at = datetime.datetime.utcnow() document.processing_started_at = datetime.datetime.utcnow()
db.session.add(document) db.session.add(document)
db.session.commit() db.session.commit()
indexing_runner.run([document]) indexing_runner.run([document])
redis_client.delete(sync_indexing_cache_key) redis_client.delete(sync_indexing_cache_key)
except Exception as ex: except Exception as ex:
document.indexing_status = 'error'
document.indexing_status = "error"
document.error = str(ex) document.error = str(ex)
document.stopped_at = datetime.datetime.utcnow() document.stopped_at = datetime.datetime.utcnow()
db.session.add(document) db.session.add(document)
db.session.commit() db.session.commit()
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
redis_client.delete(sync_indexing_cache_key) redis_client.delete(sync_indexing_cache_key)
pass pass
end_at = time.perf_counter() end_at = time.perf_counter()
logging.info(click.style('Sync document: {} latency: {}'.format(document_id, end_at - start_at), fg='green'))
logging.info(click.style("Sync document: {} latency: {}".format(document_id, end_at - start_at), fg="green"))

Loading…
Cancel
Save