Co-authored-by: Yuanbo Li <ybalbert@amazon.com>tags/0.8.0
| @@ -1,17 +1,36 @@ | |||
| import json | |||
| import logging | |||
| from collections.abc import Generator | |||
| from typing import Any, Optional, Union | |||
| import re | |||
| from collections.abc import Generator, Iterator | |||
| from typing import Any, Optional, Union, cast | |||
| # from openai.types.chat import ChatCompletion, ChatCompletionChunk | |||
| import boto3 | |||
| from sagemaker import Predictor, serializers | |||
| from sagemaker.session import Session | |||
| from core.model_runtime.entities.llm_entities import LLMMode, LLMResult | |||
| from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta | |||
| from core.model_runtime.entities.message_entities import ( | |||
| AssistantPromptMessage, | |||
| ImagePromptMessageContent, | |||
| PromptMessage, | |||
| PromptMessageContent, | |||
| PromptMessageContentType, | |||
| PromptMessageTool, | |||
| SystemPromptMessage, | |||
| ToolPromptMessage, | |||
| UserPromptMessage, | |||
| ) | |||
| from core.model_runtime.entities.model_entities import ( | |||
| AIModelEntity, | |||
| FetchFrom, | |||
| I18nObject, | |||
| ModelFeature, | |||
| ModelPropertyKey, | |||
| ModelType, | |||
| ParameterRule, | |||
| ParameterType, | |||
| ) | |||
| from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, I18nObject, ModelType | |||
| from core.model_runtime.errors.invoke import ( | |||
| InvokeAuthorizationError, | |||
| InvokeBadRequestError, | |||
| @@ -25,12 +44,140 @@ from core.model_runtime.model_providers.__base.large_language_model import Large | |||
| logger = logging.getLogger(__name__) | |||
| def inference(predictor, messages:list[dict[str,Any]], params:dict[str,Any], stop:list, stream=False): | |||
| """ | |||
| params: | |||
| predictor : Sagemaker Predictor | |||
| messages (List[Dict[str,Any]]): message list。 | |||
| messages = [ | |||
| {"role": "system", "content":"please answer in Chinese"}, | |||
| {"role": "user", "content": "who are you? what are you doing?"}, | |||
| ] | |||
| params (Dict[str,Any]): model parameters for LLM。 | |||
| stream (bool): False by default。 | |||
| response: | |||
| result of inference if stream is False | |||
| Iterator of Chunks if stream is True | |||
| """ | |||
| payload = { | |||
| "model" : params.get('model_name'), | |||
| "stop" : stop, | |||
| "messages": messages, | |||
| "stream" : stream, | |||
| "max_tokens" : params.get('max_new_tokens', params.get('max_tokens', 2048)), | |||
| "temperature" : params.get('temperature', 0.1), | |||
| "top_p" : params.get('top_p', 0.9), | |||
| } | |||
| if not stream: | |||
| response = predictor.predict(payload) | |||
| return response | |||
| else: | |||
| response_stream = predictor.predict_stream(payload) | |||
| return response_stream | |||
| class SageMakerLargeLanguageModel(LargeLanguageModel): | |||
| """ | |||
| Model class for Cohere large language model. | |||
| """ | |||
| sagemaker_client: Any = None | |||
| sagemaker_sess : Any = None | |||
| predictor : Any = None | |||
| def _handle_chat_generate_response(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], | |||
| tools: list[PromptMessageTool], | |||
| resp: bytes) -> LLMResult: | |||
| """ | |||
| handle normal chat generate response | |||
| """ | |||
| resp_obj = json.loads(resp.decode('utf-8')) | |||
| resp_str = resp_obj.get('choices')[0].get('message').get('content') | |||
| if len(resp_str) == 0: | |||
| raise InvokeServerUnavailableError("Empty response") | |||
| assistant_prompt_message = AssistantPromptMessage( | |||
| content=resp_str, | |||
| tool_calls=[] | |||
| ) | |||
| prompt_tokens = self._num_tokens_from_messages(messages=prompt_messages, tools=tools) | |||
| completion_tokens = self._num_tokens_from_messages(messages=[assistant_prompt_message], tools=tools) | |||
| usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=prompt_tokens, | |||
| completion_tokens=completion_tokens) | |||
| response = LLMResult( | |||
| model=model, | |||
| prompt_messages=prompt_messages, | |||
| system_fingerprint=None, | |||
| usage=usage, | |||
| message=assistant_prompt_message, | |||
| ) | |||
| return response | |||
| def _handle_chat_stream_response(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], | |||
| tools: list[PromptMessageTool], | |||
| resp: Iterator[bytes]) -> Generator: | |||
| """ | |||
| handle stream chat generate response | |||
| """ | |||
| full_response = '' | |||
| buffer = "" | |||
| for chunk_bytes in resp: | |||
| buffer += chunk_bytes.decode('utf-8') | |||
| last_idx = 0 | |||
| for match in re.finditer(r'^data:\s*(.+?)(\n\n)', buffer): | |||
| try: | |||
| data = json.loads(match.group(1).strip()) | |||
| last_idx = match.span()[1] | |||
| if "content" in data["choices"][0]["delta"]: | |||
| chunk_content = data["choices"][0]["delta"]["content"] | |||
| assistant_prompt_message = AssistantPromptMessage( | |||
| content=chunk_content, | |||
| tool_calls=[] | |||
| ) | |||
| if data["choices"][0]['finish_reason'] is not None: | |||
| temp_assistant_prompt_message = AssistantPromptMessage( | |||
| content=full_response, | |||
| tool_calls=[] | |||
| ) | |||
| prompt_tokens = self._num_tokens_from_messages(messages=prompt_messages, tools=tools) | |||
| completion_tokens = self._num_tokens_from_messages(messages=[temp_assistant_prompt_message], tools=[]) | |||
| usage = self._calc_response_usage(model=model, credentials=credentials, prompt_tokens=prompt_tokens, completion_tokens=completion_tokens) | |||
| yield LLMResultChunk( | |||
| model=model, | |||
| prompt_messages=prompt_messages, | |||
| system_fingerprint=None, | |||
| delta=LLMResultChunkDelta( | |||
| index=0, | |||
| message=assistant_prompt_message, | |||
| finish_reason=data["choices"][0]['finish_reason'], | |||
| usage=usage | |||
| ), | |||
| ) | |||
| else: | |||
| yield LLMResultChunk( | |||
| model=model, | |||
| prompt_messages=prompt_messages, | |||
| system_fingerprint=None, | |||
| delta=LLMResultChunkDelta( | |||
| index=0, | |||
| message=assistant_prompt_message | |||
| ), | |||
| ) | |||
| full_response += chunk_content | |||
| except (json.JSONDecodeError, KeyError, IndexError) as e: | |||
| logger.info("json parse exception, content: {}".format(match.group(1).strip())) | |||
| pass | |||
| buffer = buffer[last_idx:] | |||
| def _invoke(self, model: str, credentials: dict, | |||
| prompt_messages: list[PromptMessage], model_parameters: dict, | |||
| @@ -50,9 +197,6 @@ class SageMakerLargeLanguageModel(LargeLanguageModel): | |||
| :param user: unique user id | |||
| :return: full response or stream response chunk generator result | |||
| """ | |||
| # get model mode | |||
| model_mode = self.get_model_mode(model, credentials) | |||
| if not self.sagemaker_client: | |||
| access_key = credentials.get('access_key') | |||
| secret_key = credentials.get('secret_key') | |||
| @@ -68,37 +212,132 @@ class SageMakerLargeLanguageModel(LargeLanguageModel): | |||
| else: | |||
| self.sagemaker_client = boto3.client("sagemaker-runtime") | |||
| sagemaker_session = Session(sagemaker_runtime_client=self.sagemaker_client) | |||
| self.predictor = Predictor( | |||
| endpoint_name=credentials.get('sagemaker_endpoint'), | |||
| sagemaker_session=sagemaker_session, | |||
| serializer=serializers.JSONSerializer(), | |||
| ) | |||
| sagemaker_endpoint = credentials.get('sagemaker_endpoint') | |||
| response_model = self.sagemaker_client.invoke_endpoint( | |||
| EndpointName=sagemaker_endpoint, | |||
| Body=json.dumps( | |||
| { | |||
| "inputs": prompt_messages[0].content, | |||
| "parameters": { "stop" : stop}, | |||
| "history" : [] | |||
| } | |||
| ), | |||
| ContentType="application/json", | |||
| ) | |||
| assistant_text = response_model['Body'].read().decode('utf8') | |||
| messages:list[dict[str,Any]] = [ {"role": p.role.value, "content": p.content} for p in prompt_messages ] | |||
| response = inference(predictor=self.predictor, messages=messages, params=model_parameters, stop=stop, stream=stream) | |||
| # transform assistant message to prompt message | |||
| assistant_prompt_message = AssistantPromptMessage( | |||
| content=assistant_text | |||
| ) | |||
| if stream: | |||
| if tools and len(tools) > 0: | |||
| raise InvokeBadRequestError(f"{model}'s tool calls does not support stream mode") | |||
| usage = self._calc_response_usage(model, credentials, 0, 0) | |||
| return self._handle_chat_stream_response(model=model, credentials=credentials, | |||
| prompt_messages=prompt_messages, | |||
| tools=tools, resp=response) | |||
| return self._handle_chat_generate_response(model=model, credentials=credentials, | |||
| prompt_messages=prompt_messages, | |||
| tools=tools, resp=response) | |||
| response = LLMResult( | |||
| model=model, | |||
| prompt_messages=prompt_messages, | |||
| message=assistant_prompt_message, | |||
| usage=usage | |||
| ) | |||
| def _convert_prompt_message_to_dict(self, message: PromptMessage) -> dict: | |||
| """ | |||
| Convert PromptMessage to dict for OpenAI Compatibility API | |||
| """ | |||
| if isinstance(message, UserPromptMessage): | |||
| message = cast(UserPromptMessage, message) | |||
| if isinstance(message.content, str): | |||
| message_dict = {"role": "user", "content": message.content} | |||
| else: | |||
| sub_messages = [] | |||
| for message_content in message.content: | |||
| if message_content.type == PromptMessageContentType.TEXT: | |||
| message_content = cast(PromptMessageContent, message_content) | |||
| sub_message_dict = { | |||
| "type": "text", | |||
| "text": message_content.data | |||
| } | |||
| sub_messages.append(sub_message_dict) | |||
| elif message_content.type == PromptMessageContentType.IMAGE: | |||
| message_content = cast(ImagePromptMessageContent, message_content) | |||
| sub_message_dict = { | |||
| "type": "image_url", | |||
| "image_url": { | |||
| "url": message_content.data, | |||
| "detail": message_content.detail.value | |||
| } | |||
| } | |||
| sub_messages.append(sub_message_dict) | |||
| message_dict = {"role": "user", "content": sub_messages} | |||
| elif isinstance(message, AssistantPromptMessage): | |||
| message = cast(AssistantPromptMessage, message) | |||
| message_dict = {"role": "assistant", "content": message.content} | |||
| if message.tool_calls and len(message.tool_calls) > 0: | |||
| message_dict["function_call"] = { | |||
| "name": message.tool_calls[0].function.name, | |||
| "arguments": message.tool_calls[0].function.arguments | |||
| } | |||
| elif isinstance(message, SystemPromptMessage): | |||
| message = cast(SystemPromptMessage, message) | |||
| message_dict = {"role": "system", "content": message.content} | |||
| elif isinstance(message, ToolPromptMessage): | |||
| message = cast(ToolPromptMessage, message) | |||
| message_dict = {"tool_call_id": message.tool_call_id, "role": "tool", "content": message.content} | |||
| else: | |||
| raise ValueError(f"Unknown message type {type(message)}") | |||
| return message_dict | |||
| def _num_tokens_from_messages(self, messages: list[PromptMessage], tools: list[PromptMessageTool], | |||
| is_completion_model: bool = False) -> int: | |||
| def tokens(text: str): | |||
| return self._get_num_tokens_by_gpt2(text) | |||
| if is_completion_model: | |||
| return sum(tokens(str(message.content)) for message in messages) | |||
| tokens_per_message = 3 | |||
| tokens_per_name = 1 | |||
| num_tokens = 0 | |||
| messages_dict = [self._convert_prompt_message_to_dict(m) for m in messages] | |||
| for message in messages_dict: | |||
| num_tokens += tokens_per_message | |||
| for key, value in message.items(): | |||
| if isinstance(value, list): | |||
| text = '' | |||
| for item in value: | |||
| if isinstance(item, dict) and item['type'] == 'text': | |||
| text += item['text'] | |||
| value = text | |||
| if key == "tool_calls": | |||
| for tool_call in value: | |||
| for t_key, t_value in tool_call.items(): | |||
| num_tokens += tokens(t_key) | |||
| if t_key == "function": | |||
| for f_key, f_value in t_value.items(): | |||
| num_tokens += tokens(f_key) | |||
| num_tokens += tokens(f_value) | |||
| else: | |||
| num_tokens += tokens(t_key) | |||
| num_tokens += tokens(t_value) | |||
| if key == "function_call": | |||
| for t_key, t_value in value.items(): | |||
| num_tokens += tokens(t_key) | |||
| if t_key == "function": | |||
| for f_key, f_value in t_value.items(): | |||
| num_tokens += tokens(f_key) | |||
| num_tokens += tokens(f_value) | |||
| else: | |||
| num_tokens += tokens(t_key) | |||
| num_tokens += tokens(t_value) | |||
| else: | |||
| num_tokens += tokens(str(value)) | |||
| return response | |||
| if key == "name": | |||
| num_tokens += tokens_per_name | |||
| num_tokens += 3 | |||
| if tools: | |||
| num_tokens += self._num_tokens_for_tools(tools) | |||
| return num_tokens | |||
| def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], | |||
| tools: Optional[list[PromptMessageTool]] = None) -> int: | |||
| @@ -112,10 +351,8 @@ class SageMakerLargeLanguageModel(LargeLanguageModel): | |||
| :return: | |||
| """ | |||
| # get model mode | |||
| model_mode = self.get_model_mode(model) | |||
| try: | |||
| return 0 | |||
| return self._num_tokens_from_messages(prompt_messages, tools) | |||
| except Exception as e: | |||
| raise self._transform_invoke_error(e) | |||
| @@ -129,7 +366,7 @@ class SageMakerLargeLanguageModel(LargeLanguageModel): | |||
| """ | |||
| try: | |||
| # get model mode | |||
| model_mode = self.get_model_mode(model) | |||
| pass | |||
| except Exception as ex: | |||
| raise CredentialsValidateFailedError(str(ex)) | |||
| @@ -200,13 +437,7 @@ class SageMakerLargeLanguageModel(LargeLanguageModel): | |||
| ) | |||
| ] | |||
| completion_type = LLMMode.value_of(credentials["mode"]) | |||
| if completion_type == LLMMode.CHAT: | |||
| print(f"completion_type : {LLMMode.CHAT.value}") | |||
| if completion_type == LLMMode.COMPLETION: | |||
| print(f"completion_type : {LLMMode.COMPLETION.value}") | |||
| completion_type = LLMMode.value_of(credentials["mode"]).value | |||
| features = [] | |||
| @@ -22,7 +22,7 @@ logger = logging.getLogger(__name__) | |||
| class SageMakerRerankModel(RerankModel): | |||
| """ | |||
| Model class for Cohere rerank model. | |||
| Model class for SageMaker rerank model. | |||
| """ | |||
| sagemaker_client: Any = None | |||
| @@ -1,10 +1,11 @@ | |||
| import logging | |||
| import uuid | |||
| from typing import IO, Any | |||
| from core.model_runtime.model_providers.__base.model_provider import ModelProvider | |||
| logger = logging.getLogger(__name__) | |||
| class SageMakerProvider(ModelProvider): | |||
| def validate_provider_credentials(self, credentials: dict) -> None: | |||
| """ | |||
| @@ -15,3 +16,28 @@ class SageMakerProvider(ModelProvider): | |||
| :param credentials: provider credentials, credentials form defined in `provider_credential_schema`. | |||
| """ | |||
| pass | |||
| def buffer_to_s3(s3_client:Any, file: IO[bytes], bucket:str, s3_prefix:str) -> str: | |||
| ''' | |||
| return s3_uri of this file | |||
| ''' | |||
| s3_key = f'{s3_prefix}{uuid.uuid4()}.mp3' | |||
| s3_client.put_object( | |||
| Body=file.read(), | |||
| Bucket=bucket, | |||
| Key=s3_key, | |||
| ContentType='audio/mp3' | |||
| ) | |||
| return s3_key | |||
| def generate_presigned_url(s3_client:Any, file: IO[bytes], bucket_name:str, s3_prefix:str, expiration=600) -> str: | |||
| object_key = buffer_to_s3(s3_client, file, bucket_name, s3_prefix) | |||
| try: | |||
| response = s3_client.generate_presigned_url('get_object', | |||
| Params={'Bucket': bucket_name, 'Key': object_key}, | |||
| ExpiresIn=expiration) | |||
| except Exception as e: | |||
| print(f"Error generating presigned URL: {e}") | |||
| return None | |||
| return response | |||
| @@ -21,6 +21,8 @@ supported_model_types: | |||
| - llm | |||
| - text-embedding | |||
| - rerank | |||
| - speech2text | |||
| - tts | |||
| configurate_methods: | |||
| - customizable-model | |||
| model_credential_schema: | |||
| @@ -45,14 +47,10 @@ model_credential_schema: | |||
| zh_Hans: 选择对话类型 | |||
| en_US: Select completion mode | |||
| options: | |||
| - value: completion | |||
| label: | |||
| en_US: Completion | |||
| zh_Hans: 补全 | |||
| - value: chat | |||
| label: | |||
| en_US: Chat | |||
| zh_Hans: 对话 | |||
| zh_Hans: Chat | |||
| - variable: sagemaker_endpoint | |||
| label: | |||
| en_US: sagemaker endpoint | |||
| @@ -61,6 +59,76 @@ model_credential_schema: | |||
| placeholder: | |||
| zh_Hans: 请输出你的Sagemaker推理端点 | |||
| en_US: Enter your Sagemaker Inference endpoint | |||
| - variable: audio_s3_cache_bucket | |||
| show_on: | |||
| - variable: __model_type | |||
| value: speech2text | |||
| label: | |||
| zh_Hans: 音频缓存桶(s3 bucket) | |||
| en_US: audio cache bucket(s3 bucket) | |||
| type: text-input | |||
| required: true | |||
| placeholder: | |||
| zh_Hans: sagemaker-us-east-1-******207838 | |||
| en_US: sagemaker-us-east-1-*******7838 | |||
| - variable: audio_model_type | |||
| show_on: | |||
| - variable: __model_type | |||
| value: tts | |||
| label: | |||
| en_US: Audio model type | |||
| type: select | |||
| required: true | |||
| placeholder: | |||
| zh_Hans: 语音模型类型 | |||
| en_US: Audio model type | |||
| options: | |||
| - value: PresetVoice | |||
| label: | |||
| en_US: preset voice | |||
| zh_Hans: 内置音色 | |||
| - value: CloneVoice | |||
| label: | |||
| en_US: clone voice | |||
| zh_Hans: 克隆音色 | |||
| - value: CloneVoice_CrossLingual | |||
| label: | |||
| en_US: crosslingual clone voice | |||
| zh_Hans: 跨语种克隆音色 | |||
| - value: InstructVoice | |||
| label: | |||
| en_US: Instruct voice | |||
| zh_Hans: 文字指令音色 | |||
| - variable: prompt_audio | |||
| show_on: | |||
| - variable: __model_type | |||
| value: tts | |||
| label: | |||
| en_US: Mock Audio Source | |||
| type: text-input | |||
| required: false | |||
| placeholder: | |||
| zh_Hans: 被模仿的音色音频 | |||
| en_US: source audio to be mocked | |||
| - variable: prompt_text | |||
| show_on: | |||
| - variable: __model_type | |||
| value: tts | |||
| label: | |||
| en_US: Prompt Audio Text | |||
| type: text-input | |||
| required: false | |||
| placeholder: | |||
| zh_Hans: 模仿音色的对应文本 | |||
| en_US: text for the mocked source audio | |||
| - variable: instruct_text | |||
| show_on: | |||
| - variable: __model_type | |||
| value: tts | |||
| label: | |||
| en_US: instruct text for speaker | |||
| type: text-input | |||
| required: false | |||
| - variable: aws_access_key_id | |||
| required: false | |||
| label: | |||
| @@ -0,0 +1,142 @@ | |||
| import json | |||
| import logging | |||
| from typing import IO, Any, Optional | |||
| import boto3 | |||
| from core.model_runtime.entities.common_entities import I18nObject | |||
| from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType | |||
| from core.model_runtime.errors.invoke import ( | |||
| InvokeAuthorizationError, | |||
| InvokeBadRequestError, | |||
| InvokeConnectionError, | |||
| InvokeError, | |||
| InvokeRateLimitError, | |||
| InvokeServerUnavailableError, | |||
| ) | |||
| from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel | |||
| from core.model_runtime.model_providers.sagemaker.sagemaker import generate_presigned_url | |||
| logger = logging.getLogger(__name__) | |||
| class SageMakerSpeech2TextModel(Speech2TextModel): | |||
| """ | |||
| Model class for Xinference speech to text model. | |||
| """ | |||
| sagemaker_client: Any = None | |||
| s3_client : Any = None | |||
| def _invoke(self, model: str, credentials: dict, | |||
| file: IO[bytes], user: Optional[str] = None) \ | |||
| -> str: | |||
| """ | |||
| Invoke speech2text model | |||
| :param model: model name | |||
| :param credentials: model credentials | |||
| :param file: audio file | |||
| :param user: unique user id | |||
| :return: text for given audio file | |||
| """ | |||
| asr_text = None | |||
| try: | |||
| if not self.sagemaker_client: | |||
| access_key = credentials.get('aws_access_key_id') | |||
| secret_key = credentials.get('aws_secret_access_key') | |||
| aws_region = credentials.get('aws_region') | |||
| if aws_region: | |||
| if access_key and secret_key: | |||
| self.sagemaker_client = boto3.client("sagemaker-runtime", | |||
| aws_access_key_id=access_key, | |||
| aws_secret_access_key=secret_key, | |||
| region_name=aws_region) | |||
| self.s3_client = boto3.client("s3", | |||
| aws_access_key_id=access_key, | |||
| aws_secret_access_key=secret_key, | |||
| region_name=aws_region) | |||
| else: | |||
| self.sagemaker_client = boto3.client("sagemaker-runtime", region_name=aws_region) | |||
| self.s3_client = boto3.client("s3", region_name=aws_region) | |||
| else: | |||
| self.sagemaker_client = boto3.client("sagemaker-runtime") | |||
| self.s3_client = boto3.client("s3") | |||
| s3_prefix='dify/speech2text/' | |||
| sagemaker_endpoint = credentials.get('sagemaker_endpoint') | |||
| bucket = credentials.get('audio_s3_cache_bucket') | |||
| s3_presign_url = generate_presigned_url(self.s3_client, file, bucket, s3_prefix) | |||
| payload = { | |||
| "audio_s3_presign_uri" : s3_presign_url | |||
| } | |||
| response_model = self.sagemaker_client.invoke_endpoint( | |||
| EndpointName=sagemaker_endpoint, | |||
| Body=json.dumps(payload), | |||
| ContentType="application/json" | |||
| ) | |||
| json_str = response_model['Body'].read().decode('utf8') | |||
| json_obj = json.loads(json_str) | |||
| asr_text = json_obj['text'] | |||
| except Exception as e: | |||
| logger.exception(f'Exception {e}, line : {line}') | |||
| return asr_text | |||
| def validate_credentials(self, model: str, credentials: dict) -> None: | |||
| """ | |||
| Validate model credentials | |||
| :param model: model name | |||
| :param credentials: model credentials | |||
| :return: | |||
| """ | |||
| pass | |||
| @property | |||
| def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]: | |||
| """ | |||
| Map model invoke error to unified error | |||
| The key is the error type thrown to the caller | |||
| The value is the error type thrown by the model, | |||
| which needs to be converted into a unified error type for the caller. | |||
| :return: Invoke error mapping | |||
| """ | |||
| return { | |||
| InvokeConnectionError: [ | |||
| InvokeConnectionError | |||
| ], | |||
| InvokeServerUnavailableError: [ | |||
| InvokeServerUnavailableError | |||
| ], | |||
| InvokeRateLimitError: [ | |||
| InvokeRateLimitError | |||
| ], | |||
| InvokeAuthorizationError: [ | |||
| InvokeAuthorizationError | |||
| ], | |||
| InvokeBadRequestError: [ | |||
| InvokeBadRequestError, | |||
| KeyError, | |||
| ValueError | |||
| ] | |||
| } | |||
| def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None: | |||
| """ | |||
| used to define customizable model schema | |||
| """ | |||
| entity = AIModelEntity( | |||
| model=model, | |||
| label=I18nObject( | |||
| en_US=model | |||
| ), | |||
| fetch_from=FetchFrom.CUSTOMIZABLE_MODEL, | |||
| model_type=ModelType.SPEECH2TEXT, | |||
| model_properties={ }, | |||
| parameter_rules=[] | |||
| ) | |||
| return entity | |||
| @@ -0,0 +1,287 @@ | |||
| import concurrent.futures | |||
| import copy | |||
| import json | |||
| import logging | |||
| from enum import Enum | |||
| from typing import Any, Optional | |||
| import boto3 | |||
| import requests | |||
| from core.model_runtime.entities.common_entities import I18nObject | |||
| from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType | |||
| from core.model_runtime.errors.invoke import ( | |||
| InvokeAuthorizationError, | |||
| InvokeBadRequestError, | |||
| InvokeConnectionError, | |||
| InvokeError, | |||
| InvokeRateLimitError, | |||
| InvokeServerUnavailableError, | |||
| ) | |||
| from core.model_runtime.model_providers.__base.tts_model import TTSModel | |||
| logger = logging.getLogger(__name__) | |||
| class TTSModelType(Enum): | |||
| PresetVoice = "PresetVoice" | |||
| CloneVoice = "CloneVoice" | |||
| CloneVoice_CrossLingual = "CloneVoice_CrossLingual" | |||
| InstructVoice = "InstructVoice" | |||
| class SageMakerText2SpeechModel(TTSModel): | |||
| sagemaker_client: Any = None | |||
| s3_client : Any = None | |||
| comprehend_client : Any = None | |||
| def __init__(self): | |||
| # preset voices, need support custom voice | |||
| self.model_voices = { | |||
| '__default': { | |||
| 'all': [ | |||
| {'name': 'Default', 'value': 'default'}, | |||
| ] | |||
| }, | |||
| 'CosyVoice': { | |||
| 'zh-Hans': [ | |||
| {'name': '中文男', 'value': '中文男'}, | |||
| {'name': '中文女', 'value': '中文女'}, | |||
| {'name': '粤语女', 'value': '粤语女'}, | |||
| ], | |||
| 'zh-Hant': [ | |||
| {'name': '中文男', 'value': '中文男'}, | |||
| {'name': '中文女', 'value': '中文女'}, | |||
| {'name': '粤语女', 'value': '粤语女'}, | |||
| ], | |||
| 'en-US': [ | |||
| {'name': '英文男', 'value': '英文男'}, | |||
| {'name': '英文女', 'value': '英文女'}, | |||
| ], | |||
| 'ja-JP': [ | |||
| {'name': '日语男', 'value': '日语男'}, | |||
| ], | |||
| 'ko-KR': [ | |||
| {'name': '韩语女', 'value': '韩语女'}, | |||
| ] | |||
| } | |||
| } | |||
| def validate_credentials(self, model: str, credentials: dict) -> None: | |||
| """ | |||
| Validate model credentials | |||
| :param model: model name | |||
| :param credentials: model credentials | |||
| :return: | |||
| """ | |||
| pass | |||
| def _detect_lang_code(self, content:str, map_dict:dict=None): | |||
| map_dict = { | |||
| "zh" : "<|zh|>", | |||
| "en" : "<|en|>", | |||
| "ja" : "<|jp|>", | |||
| "zh-TW" : "<|yue|>", | |||
| "ko" : "<|ko|>" | |||
| } | |||
| response = self.comprehend_client.detect_dominant_language(Text=content) | |||
| language_code = response['Languages'][0]['LanguageCode'] | |||
| return map_dict.get(language_code, '<|zh|>') | |||
| def _build_tts_payload(self, model_type:str, content_text:str, model_role:str, prompt_text:str, prompt_audio:str, instruct_text:str): | |||
| if model_type == TTSModelType.PresetVoice.value and model_role: | |||
| return { "tts_text" : content_text, "role" : model_role } | |||
| if model_type == TTSModelType.CloneVoice.value and prompt_text and prompt_audio: | |||
| return { "tts_text" : content_text, "prompt_text": prompt_text, "prompt_audio" : prompt_audio } | |||
| if model_type == TTSModelType.CloneVoice_CrossLingual.value and prompt_audio: | |||
| lang_tag = self._detect_lang_code(content_text) | |||
| return { "tts_text" : f"{content_text}", "prompt_audio" : prompt_audio, "lang_tag" : lang_tag } | |||
| if model_type == TTSModelType.InstructVoice.value and instruct_text and model_role: | |||
| return { "tts_text" : content_text, "role" : model_role, "instruct_text" : instruct_text } | |||
| raise RuntimeError(f"Invalid params for {model_type}") | |||
| def _invoke(self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str, | |||
| user: Optional[str] = None): | |||
| """ | |||
| _invoke text2speech model | |||
| :param model: model name | |||
| :param tenant_id: user tenant id | |||
| :param credentials: model credentials | |||
| :param voice: model timbre | |||
| :param content_text: text content to be translated | |||
| :param user: unique user id | |||
| :return: text translated to audio file | |||
| """ | |||
| if not self.sagemaker_client: | |||
| access_key = credentials.get('aws_access_key_id') | |||
| secret_key = credentials.get('aws_secret_access_key') | |||
| aws_region = credentials.get('aws_region') | |||
| if aws_region: | |||
| if access_key and secret_key: | |||
| self.sagemaker_client = boto3.client("sagemaker-runtime", | |||
| aws_access_key_id=access_key, | |||
| aws_secret_access_key=secret_key, | |||
| region_name=aws_region) | |||
| self.s3_client = boto3.client("s3", | |||
| aws_access_key_id=access_key, | |||
| aws_secret_access_key=secret_key, | |||
| region_name=aws_region) | |||
| self.comprehend_client = boto3.client('comprehend', | |||
| aws_access_key_id=access_key, | |||
| aws_secret_access_key=secret_key, | |||
| region_name=aws_region) | |||
| else: | |||
| self.sagemaker_client = boto3.client("sagemaker-runtime", region_name=aws_region) | |||
| self.s3_client = boto3.client("s3", region_name=aws_region) | |||
| self.comprehend_client = boto3.client('comprehend', region_name=aws_region) | |||
| else: | |||
| self.sagemaker_client = boto3.client("sagemaker-runtime") | |||
| self.s3_client = boto3.client("s3") | |||
| self.comprehend_client = boto3.client('comprehend') | |||
| model_type = credentials.get('audio_model_type', 'PresetVoice') | |||
| prompt_text = credentials.get('prompt_text') | |||
| prompt_audio = credentials.get('prompt_audio') | |||
| instruct_text = credentials.get('instruct_text') | |||
| sagemaker_endpoint = credentials.get('sagemaker_endpoint') | |||
| payload = self._build_tts_payload( | |||
| model_type, | |||
| content_text, | |||
| voice, | |||
| prompt_text, | |||
| prompt_audio, | |||
| instruct_text | |||
| ) | |||
| return self._tts_invoke_streaming(model_type, payload, sagemaker_endpoint) | |||
| def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None: | |||
| """ | |||
| used to define customizable model schema | |||
| """ | |||
| entity = AIModelEntity( | |||
| model=model, | |||
| label=I18nObject( | |||
| en_US=model | |||
| ), | |||
| fetch_from=FetchFrom.CUSTOMIZABLE_MODEL, | |||
| model_type=ModelType.TTS, | |||
| model_properties={}, | |||
| parameter_rules=[] | |||
| ) | |||
| return entity | |||
| @property | |||
| def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]: | |||
| """ | |||
| Map model invoke error to unified error | |||
| The key is the error type thrown to the caller | |||
| The value is the error type thrown by the model, | |||
| which needs to be converted into a unified error type for the caller. | |||
| :return: Invoke error mapping | |||
| """ | |||
| return { | |||
| InvokeConnectionError: [ | |||
| InvokeConnectionError | |||
| ], | |||
| InvokeServerUnavailableError: [ | |||
| InvokeServerUnavailableError | |||
| ], | |||
| InvokeRateLimitError: [ | |||
| InvokeRateLimitError | |||
| ], | |||
| InvokeAuthorizationError: [ | |||
| InvokeAuthorizationError | |||
| ], | |||
| InvokeBadRequestError: [ | |||
| InvokeBadRequestError, | |||
| KeyError, | |||
| ValueError | |||
| ] | |||
| } | |||
| def _get_model_default_voice(self, model: str, credentials: dict) -> any: | |||
| return "" | |||
| def _get_model_word_limit(self, model: str, credentials: dict) -> int: | |||
| return 15 | |||
| def _get_model_audio_type(self, model: str, credentials: dict) -> str: | |||
| return "mp3" | |||
| def _get_model_workers_limit(self, model: str, credentials: dict) -> int: | |||
| return 5 | |||
| def get_tts_model_voices(self, model: str, credentials: dict, language: Optional[str] = None) -> list: | |||
| audio_model_name = 'CosyVoice' | |||
| for key, voices in self.model_voices.items(): | |||
| if key in audio_model_name: | |||
| if language and language in voices: | |||
| return voices[language] | |||
| elif 'all' in voices: | |||
| return voices['all'] | |||
| return self.model_voices['__default']['all'] | |||
| def _invoke_sagemaker(self, payload:dict, endpoint:str): | |||
| response_model = self.sagemaker_client.invoke_endpoint( | |||
| EndpointName=endpoint, | |||
| Body=json.dumps(payload), | |||
| ContentType="application/json", | |||
| ) | |||
| json_str = response_model['Body'].read().decode('utf8') | |||
| json_obj = json.loads(json_str) | |||
| return json_obj | |||
| def _tts_invoke_streaming(self, model_type:str, payload:dict, sagemaker_endpoint:str) -> any: | |||
| """ | |||
| _tts_invoke_streaming text2speech model | |||
| :param model: model name | |||
| :param credentials: model credentials | |||
| :param content_text: text content to be translated | |||
| :param voice: model timbre | |||
| :return: text translated to audio file | |||
| """ | |||
| try: | |||
| lang_tag = '' | |||
| if model_type == TTSModelType.CloneVoice_CrossLingual.value: | |||
| lang_tag = payload.pop('lang_tag') | |||
| word_limit = self._get_model_word_limit(model='', credentials={}) | |||
| content_text = payload.get("tts_text") | |||
| if len(content_text) > word_limit: | |||
| split_sentences = self._split_text_into_sentences(content_text, max_length=word_limit) | |||
| sentences = [ f"{lang_tag}{s}" for s in split_sentences if len(s) ] | |||
| len_sent = len(sentences) | |||
| executor = concurrent.futures.ThreadPoolExecutor(max_workers=min(4, len_sent)) | |||
| payloads = [ copy.deepcopy(payload) for i in range(len_sent) ] | |||
| for idx in range(len_sent): | |||
| payloads[idx]["tts_text"] = sentences[idx] | |||
| futures = [ executor.submit( | |||
| self._invoke_sagemaker, | |||
| payload=payload, | |||
| endpoint=sagemaker_endpoint, | |||
| ) | |||
| for payload in payloads] | |||
| for index, future in enumerate(futures): | |||
| resp = future.result() | |||
| audio_bytes = requests.get(resp.get('s3_presign_url')).content | |||
| for i in range(0, len(audio_bytes), 1024): | |||
| yield audio_bytes[i:i + 1024] | |||
| else: | |||
| resp = self._invoke_sagemaker(payload, sagemaker_endpoint) | |||
| audio_bytes = requests.get(resp.get('s3_presign_url')).content | |||
| for i in range(0, len(audio_bytes), 1024): | |||
| yield audio_bytes[i:i + 1024] | |||
| except Exception as ex: | |||
| raise InvokeBadRequestError(str(ex)) | |||
| @@ -3,6 +3,7 @@ import logging | |||
| from typing import Any, Union | |||
| import boto3 | |||
| from botocore.exceptions import BotoCoreError | |||
| from pydantic import BaseModel, Field | |||
| from core.tools.entities.tool_entities import ToolInvokeMessage | |||
| @@ -16,7 +17,7 @@ class GuardrailParameters(BaseModel): | |||
| guardrail_version: str = Field(..., description="The version of the guardrail") | |||
| source: str = Field(..., description="The source of the content") | |||
| text: str = Field(..., description="The text to apply the guardrail to") | |||
| aws_region: str = Field(default="us-east-1", description="AWS region for the Bedrock client") | |||
| aws_region: str = Field(..., description="AWS region for the Bedrock client") | |||
| class ApplyGuardrailTool(BuiltinTool): | |||
| def _invoke(self, | |||
| @@ -40,6 +41,8 @@ class ApplyGuardrailTool(BuiltinTool): | |||
| source=params.source, | |||
| content=[{"text": {"text": params.text}}] | |||
| ) | |||
| logger.info(f"Raw response from AWS: {json.dumps(response, indent=2)}") | |||
| # Check for empty response | |||
| if not response: | |||
| @@ -69,7 +72,7 @@ class ApplyGuardrailTool(BuiltinTool): | |||
| return self.create_text_message(text=result) | |||
| except boto3.exceptions.BotoCoreError as e: | |||
| except BotoCoreError as e: | |||
| error_message = f'AWS service error: {str(e)}' | |||
| logger.error(error_message, exc_info=True) | |||
| return self.create_text_message(text=error_message) | |||
| @@ -80,4 +83,4 @@ class ApplyGuardrailTool(BuiltinTool): | |||
| except Exception as e: | |||
| error_message = f'An unexpected error occurred: {str(e)}' | |||
| logger.error(error_message, exc_info=True) | |||
| return self.create_text_message(text=error_message) | |||
| return self.create_text_message(text=error_message) | |||
| @@ -54,3 +54,14 @@ parameters: | |||
| zh_Hans: 用于请求护栏审查的内容,可以是用户输入或 LLM 输出。 | |||
| llm_description: The content used for requesting guardrail review, which can be either user input or LLM output. | |||
| form: llm | |||
| - name: aws_region | |||
| type: string | |||
| required: true | |||
| label: | |||
| en_US: AWS Region | |||
| zh_Hans: AWS 区域 | |||
| human_description: | |||
| en_US: Please enter the AWS region for the Bedrock client, for example 'us-east-1'. | |||
| zh_Hans: 请输入 Bedrock 客户端的 AWS 区域,例如 'us-east-1'。 | |||
| llm_description: Please enter the AWS region for the Bedrock client, for example 'us-east-1'. | |||
| form: form | |||
| @@ -0,0 +1,71 @@ | |||
| import json | |||
| import logging | |||
| from typing import Any, Union | |||
| import boto3 | |||
| from core.tools.entities.tool_entities import ToolInvokeMessage | |||
| from core.tools.tool.builtin_tool import BuiltinTool | |||
| logging.basicConfig(level=logging.INFO) | |||
| logger = logging.getLogger(__name__) | |||
| console_handler = logging.StreamHandler() | |||
| logger.addHandler(console_handler) | |||
| class LambdaYamlToJsonTool(BuiltinTool): | |||
| lambda_client: Any = None | |||
| def _invoke_lambda(self, lambda_name: str, yaml_content: str) -> str: | |||
| msg = { | |||
| "body": yaml_content | |||
| } | |||
| logger.info(json.dumps(msg)) | |||
| invoke_response = self.lambda_client.invoke(FunctionName=lambda_name, | |||
| InvocationType='RequestResponse', | |||
| Payload=json.dumps(msg)) | |||
| response_body = invoke_response['Payload'] | |||
| response_str = response_body.read().decode("utf-8") | |||
| resp_json = json.loads(response_str) | |||
| logger.info(resp_json) | |||
| if resp_json['statusCode'] != 200: | |||
| raise Exception(f"Invalid status code: {response_str}") | |||
| return resp_json['body'] | |||
| def _invoke(self, | |||
| user_id: str, | |||
| tool_parameters: dict[str, Any], | |||
| ) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]: | |||
| """ | |||
| invoke tools | |||
| """ | |||
| try: | |||
| if not self.lambda_client: | |||
| aws_region = tool_parameters.get('aws_region') # todo: move aws_region out, and update client region | |||
| if aws_region: | |||
| self.lambda_client = boto3.client("lambda", region_name=aws_region) | |||
| else: | |||
| self.lambda_client = boto3.client("lambda") | |||
| yaml_content = tool_parameters.get('yaml_content', '') | |||
| if not yaml_content: | |||
| return self.create_text_message('Please input yaml_content') | |||
| lambda_name = tool_parameters.get('lambda_name', '') | |||
| if not lambda_name: | |||
| return self.create_text_message('Please input lambda_name') | |||
| logger.debug(f'{json.dumps(tool_parameters, indent=2, ensure_ascii=False)}') | |||
| result = self._invoke_lambda(lambda_name, yaml_content) | |||
| logger.debug(result) | |||
| return self.create_text_message(result) | |||
| except Exception as e: | |||
| return self.create_text_message(f'Exception: {str(e)}') | |||
| console_handler.flush() | |||
| @@ -0,0 +1,53 @@ | |||
| identity: | |||
| name: lambda_yaml_to_json | |||
| author: AWS | |||
| label: | |||
| en_US: LambdaYamlToJson | |||
| zh_Hans: LambdaYamlToJson | |||
| pt_BR: LambdaYamlToJson | |||
| icon: icon.svg | |||
| description: | |||
| human: | |||
| en_US: A tool to convert yaml to json using AWS Lambda. | |||
| zh_Hans: 将 YAML 转为 JSON 的工具(通过AWS Lambda)。 | |||
| pt_BR: A tool to convert yaml to json using AWS Lambda. | |||
| llm: A tool to convert yaml to json. | |||
| parameters: | |||
| - name: yaml_content | |||
| type: string | |||
| required: true | |||
| label: | |||
| en_US: YAML content to convert for | |||
| zh_Hans: YAML 内容 | |||
| pt_BR: YAML content to convert for | |||
| human_description: | |||
| en_US: YAML content to convert for | |||
| zh_Hans: YAML 内容 | |||
| pt_BR: YAML content to convert for | |||
| llm_description: YAML content to convert for | |||
| form: llm | |||
| - name: aws_region | |||
| type: string | |||
| required: false | |||
| label: | |||
| en_US: region of lambda | |||
| zh_Hans: Lambda 所在的region | |||
| pt_BR: region of lambda | |||
| human_description: | |||
| en_US: region of lambda | |||
| zh_Hans: Lambda 所在的region | |||
| pt_BR: region of lambda | |||
| llm_description: region of lambda | |||
| form: form | |||
| - name: lambda_name | |||
| type: string | |||
| required: false | |||
| label: | |||
| en_US: name of lambda | |||
| zh_Hans: Lambda 名称 | |||
| pt_BR: name of lambda | |||
| human_description: | |||
| en_US: name of lambda | |||
| zh_Hans: Lambda 名称 | |||
| pt_BR: name of lambda | |||
| form: form | |||
| @@ -78,9 +78,7 @@ class SageMakerReRankTool(BuiltinTool): | |||
| sorted_candidate_docs = sorted(candidate_docs, key=lambda x: x['score'], reverse=True) | |||
| line = 9 | |||
| results_str = json.dumps(sorted_candidate_docs[:self.topk], ensure_ascii=False) | |||
| return self.create_text_message(text=results_str) | |||
| return [ self.create_json_message(res) for res in sorted_candidate_docs[:self.topk] ] | |||
| except Exception as e: | |||
| return self.create_text_message(f'Exception {str(e)}, line : {line}') | |||
| return self.create_text_message(f'Exception {str(e)}, line : {line}') | |||
| @@ -0,0 +1,95 @@ | |||
| import json | |||
| from enum import Enum | |||
| from typing import Any, Union | |||
| import boto3 | |||
| from core.tools.entities.tool_entities import ToolInvokeMessage | |||
| from core.tools.tool.builtin_tool import BuiltinTool | |||
| class TTSModelType(Enum): | |||
| PresetVoice = "PresetVoice" | |||
| CloneVoice = "CloneVoice" | |||
| CloneVoice_CrossLingual = "CloneVoice_CrossLingual" | |||
| InstructVoice = "InstructVoice" | |||
| class SageMakerTTSTool(BuiltinTool): | |||
| sagemaker_client: Any = None | |||
| sagemaker_endpoint:str = None | |||
| s3_client : Any = None | |||
| comprehend_client : Any = None | |||
| def _detect_lang_code(self, content:str, map_dict:dict=None): | |||
| map_dict = { | |||
| "zh" : "<|zh|>", | |||
| "en" : "<|en|>", | |||
| "ja" : "<|jp|>", | |||
| "zh-TW" : "<|yue|>", | |||
| "ko" : "<|ko|>" | |||
| } | |||
| response = self.comprehend_client.detect_dominant_language(Text=content) | |||
| language_code = response['Languages'][0]['LanguageCode'] | |||
| return map_dict.get(language_code, '<|zh|>') | |||
| def _build_tts_payload(self, model_type:str, content_text:str, model_role:str, prompt_text:str, prompt_audio:str, instruct_text:str): | |||
| if model_type == TTSModelType.PresetVoice.value and model_role: | |||
| return { "tts_text" : content_text, "role" : model_role } | |||
| if model_type == TTSModelType.CloneVoice.value and prompt_text and prompt_audio: | |||
| return { "tts_text" : content_text, "prompt_text": prompt_text, "prompt_audio" : prompt_audio } | |||
| if model_type == TTSModelType.CloneVoice_CrossLingual.value and prompt_audio: | |||
| lang_tag = self._detect_lang_code(content_text) | |||
| return { "tts_text" : f"{content_text}", "prompt_audio" : prompt_audio, "lang_tag" : lang_tag } | |||
| if model_type == TTSModelType.InstructVoice.value and instruct_text and model_role: | |||
| return { "tts_text" : content_text, "role" : model_role, "instruct_text" : instruct_text } | |||
| raise RuntimeError(f"Invalid params for {model_type}") | |||
| def _invoke_sagemaker(self, payload:dict, endpoint:str): | |||
| response_model = self.sagemaker_client.invoke_endpoint( | |||
| EndpointName=endpoint, | |||
| Body=json.dumps(payload), | |||
| ContentType="application/json", | |||
| ) | |||
| json_str = response_model['Body'].read().decode('utf8') | |||
| json_obj = json.loads(json_str) | |||
| return json_obj | |||
| def _invoke(self, | |||
| user_id: str, | |||
| tool_parameters: dict[str, Any], | |||
| ) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]: | |||
| """ | |||
| invoke tools | |||
| """ | |||
| try: | |||
| if not self.sagemaker_client: | |||
| aws_region = tool_parameters.get('aws_region') | |||
| if aws_region: | |||
| self.sagemaker_client = boto3.client("sagemaker-runtime", region_name=aws_region) | |||
| self.s3_client = boto3.client("s3", region_name=aws_region) | |||
| self.comprehend_client = boto3.client('comprehend', region_name=aws_region) | |||
| else: | |||
| self.sagemaker_client = boto3.client("sagemaker-runtime") | |||
| self.s3_client = boto3.client("s3") | |||
| self.comprehend_client = boto3.client('comprehend') | |||
| if not self.sagemaker_endpoint: | |||
| self.sagemaker_endpoint = tool_parameters.get('sagemaker_endpoint') | |||
| tts_text = tool_parameters.get('tts_text') | |||
| tts_infer_type = tool_parameters.get('tts_infer_type') | |||
| voice = tool_parameters.get('voice') | |||
| mock_voice_audio = tool_parameters.get('mock_voice_audio') | |||
| mock_voice_text = tool_parameters.get('mock_voice_text') | |||
| voice_instruct_prompt = tool_parameters.get('voice_instruct_prompt') | |||
| payload = self._build_tts_payload(tts_infer_type, tts_text, voice, mock_voice_text, mock_voice_audio, voice_instruct_prompt) | |||
| result = self._invoke_sagemaker(payload, self.sagemaker_endpoint) | |||
| return self.create_text_message(text=result['s3_presign_url']) | |||
| except Exception as e: | |||
| return self.create_text_message(f'Exception {str(e)}') | |||
| @@ -0,0 +1,149 @@ | |||
| identity: | |||
| name: sagemaker_tts | |||
| author: AWS | |||
| label: | |||
| en_US: SagemakerTTS | |||
| zh_Hans: Sagemaker语音合成 | |||
| pt_BR: SagemakerTTS | |||
| icon: icon.svg | |||
| description: | |||
| human: | |||
| en_US: A tool for Speech synthesis - https://github.com/aws-samples/dify-aws-tool | |||
| zh_Hans: Sagemaker语音合成工具, 请参考 Github Repo - https://github.com/aws-samples/dify-aws-tool上的部署脚本 | |||
| pt_BR: A tool for Speech synthesis. | |||
| llm: A tool for Speech synthesis. You can find deploy notebook on Github Repo - https://github.com/aws-samples/dify-aws-tool | |||
| parameters: | |||
| - name: sagemaker_endpoint | |||
| type: string | |||
| required: true | |||
| label: | |||
| en_US: sagemaker endpoint for tts | |||
| zh_Hans: 语音生成的SageMaker端点 | |||
| pt_BR: sagemaker endpoint for tts | |||
| human_description: | |||
| en_US: sagemaker endpoint for tts | |||
| zh_Hans: 语音生成的SageMaker端点 | |||
| pt_BR: sagemaker endpoint for tts | |||
| llm_description: sagemaker endpoint for tts | |||
| form: form | |||
| - name: tts_text | |||
| type: string | |||
| required: true | |||
| label: | |||
| en_US: tts text | |||
| zh_Hans: 语音合成原文 | |||
| pt_BR: tts text | |||
| human_description: | |||
| en_US: tts text | |||
| zh_Hans: 语音合成原文 | |||
| pt_BR: tts text | |||
| llm_description: tts text | |||
| form: llm | |||
| - name: tts_infer_type | |||
| type: select | |||
| required: false | |||
| label: | |||
| en_US: tts infer type | |||
| zh_Hans: 合成方式 | |||
| pt_BR: tts infer type | |||
| human_description: | |||
| en_US: tts infer type | |||
| zh_Hans: 合成方式 | |||
| pt_BR: tts infer type | |||
| llm_description: tts infer type | |||
| options: | |||
| - value: PresetVoice | |||
| label: | |||
| en_US: preset voice | |||
| zh_Hans: 预置音色 | |||
| - value: CloneVoice | |||
| label: | |||
| en_US: clone voice | |||
| zh_Hans: 克隆音色 | |||
| - value: CloneVoice_CrossLingual | |||
| label: | |||
| en_US: clone crossLingual voice | |||
| zh_Hans: 克隆音色(跨语言) | |||
| - value: InstructVoice | |||
| label: | |||
| en_US: instruct voice | |||
| zh_Hans: 指令音色 | |||
| form: form | |||
| - name: voice | |||
| type: select | |||
| required: false | |||
| label: | |||
| en_US: preset voice | |||
| zh_Hans: 预置音色 | |||
| pt_BR: preset voice | |||
| human_description: | |||
| en_US: preset voice | |||
| zh_Hans: 预置音色 | |||
| pt_BR: preset voice | |||
| llm_description: preset voice | |||
| options: | |||
| - value: 中文男 | |||
| label: | |||
| en_US: zh-cn male | |||
| zh_Hans: 中文男 | |||
| - value: 中文女 | |||
| label: | |||
| en_US: zh-cn female | |||
| zh_Hans: 中文女 | |||
| - value: 粤语女 | |||
| label: | |||
| en_US: zh-TW female | |||
| zh_Hans: 粤语女 | |||
| form: form | |||
| - name: mock_voice_audio | |||
| type: string | |||
| required: false | |||
| label: | |||
| en_US: clone voice link | |||
| zh_Hans: 克隆音频链接 | |||
| pt_BR: clone voice link | |||
| human_description: | |||
| en_US: clone voice link | |||
| zh_Hans: 克隆音频链接 | |||
| pt_BR: clone voice link | |||
| llm_description: clone voice link | |||
| form: llm | |||
| - name: mock_voice_text | |||
| type: string | |||
| required: false | |||
| label: | |||
| en_US: text of clone voice | |||
| zh_Hans: 克隆音频对应文本 | |||
| pt_BR: text of clone voice | |||
| human_description: | |||
| en_US: text of clone voice | |||
| zh_Hans: 克隆音频对应文本 | |||
| pt_BR: text of clone voice | |||
| llm_description: text of clone voice | |||
| form: llm | |||
| - name: voice_instruct_prompt | |||
| type: string | |||
| required: false | |||
| label: | |||
| en_US: instruct prompt for voice | |||
| zh_Hans: 音色指令文本 | |||
| pt_BR: instruct prompt for voice | |||
| human_description: | |||
| en_US: instruct prompt for voice | |||
| zh_Hans: 音色指令文本 | |||
| pt_BR: instruct prompt for voice | |||
| llm_description: instruct prompt for voice | |||
| form: llm | |||
| - name: aws_region | |||
| type: string | |||
| required: false | |||
| label: | |||
| en_US: region of sagemaker endpoint | |||
| zh_Hans: SageMaker 端点所在的region | |||
| pt_BR: region of sagemaker endpoint | |||
| human_description: | |||
| en_US: region of sagemaker endpoint | |||
| zh_Hans: SageMaker 端点所在的region | |||
| pt_BR: region of sagemaker endpoint | |||
| llm_description: region of sagemaker endpoint | |||
| form: form | |||
| @@ -520,22 +520,22 @@ files = [ | |||
| [[package]] | |||
| name = "attrs" | |||
| version = "24.2.0" | |||
| version = "23.2.0" | |||
| description = "Classes Without Boilerplate" | |||
| optional = false | |||
| python-versions = ">=3.7" | |||
| files = [ | |||
| {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, | |||
| {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, | |||
| {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"}, | |||
| {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"}, | |||
| ] | |||
| [package.extras] | |||
| benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] | |||
| cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] | |||
| dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] | |||
| docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] | |||
| tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] | |||
| tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] | |||
| cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] | |||
| dev = ["attrs[tests]", "pre-commit"] | |||
| docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] | |||
| tests = ["attrs[tests-no-zope]", "zope-interface"] | |||
| tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"] | |||
| tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"] | |||
| [[package]] | |||
| name = "authlib" | |||
| @@ -1719,6 +1719,17 @@ lz4 = ["clickhouse-cityhash (>=1.0.2.1)", "lz4", "lz4 (<=3.0.1)"] | |||
| numpy = ["numpy (>=1.12.0)", "pandas (>=0.24.0)"] | |||
| zstd = ["clickhouse-cityhash (>=1.0.2.1)", "zstd"] | |||
| [[package]] | |||
| name = "cloudpickle" | |||
| version = "2.2.1" | |||
| description = "Extended pickling support for Python objects" | |||
| optional = false | |||
| python-versions = ">=3.6" | |||
| files = [ | |||
| {file = "cloudpickle-2.2.1-py3-none-any.whl", hash = "sha256:61f594d1f4c295fa5cd9014ceb3a1fc4a70b0de1164b94fbc2d854ccba056f9f"}, | |||
| {file = "cloudpickle-2.2.1.tar.gz", hash = "sha256:d89684b8de9e34a2a43b3460fbca07d09d6e25ce858df4d5a44240403b6178f5"}, | |||
| ] | |||
| [[package]] | |||
| name = "cloudscraper" | |||
| version = "1.2.71" | |||
| @@ -2151,6 +2162,21 @@ wrapt = ">=1.10,<2" | |||
| [package.extras] | |||
| dev = ["PyTest", "PyTest-Cov", "bump2version (<1)", "sphinx (<2)", "tox"] | |||
| [[package]] | |||
| name = "dill" | |||
| version = "0.3.8" | |||
| description = "serialize all of Python" | |||
| optional = false | |||
| python-versions = ">=3.8" | |||
| files = [ | |||
| {file = "dill-0.3.8-py3-none-any.whl", hash = "sha256:c36ca9ffb54365bdd2f8eb3eff7d2a21237f8452b57ace88b1ac615b7e815bd7"}, | |||
| {file = "dill-0.3.8.tar.gz", hash = "sha256:3ebe3c479ad625c4553aca177444d89b486b1d84982eeacded644afc0cf797ca"}, | |||
| ] | |||
| [package.extras] | |||
| graph = ["objgraph (>=1.7.2)"] | |||
| profile = ["gprof2dot (>=2022.7.29)"] | |||
| [[package]] | |||
| name = "distro" | |||
| version = "1.9.0" | |||
| @@ -2162,6 +2188,28 @@ files = [ | |||
| {file = "distro-1.9.0.tar.gz", hash = "sha256:2fa77c6fd8940f116ee1d6b94a2f90b13b5ea8d019b98bc8bafdcabcdd9bdbed"}, | |||
| ] | |||
| [[package]] | |||
| name = "docker" | |||
| version = "7.1.0" | |||
| description = "A Python library for the Docker Engine API." | |||
| optional = false | |||
| python-versions = ">=3.8" | |||
| files = [ | |||
| {file = "docker-7.1.0-py3-none-any.whl", hash = "sha256:c96b93b7f0a746f9e77d325bcfb87422a3d8bd4f03136ae8a85b37f1898d5fc0"}, | |||
| {file = "docker-7.1.0.tar.gz", hash = "sha256:ad8c70e6e3f8926cb8a92619b832b4ea5299e2831c14284663184e200546fa6c"}, | |||
| ] | |||
| [package.dependencies] | |||
| pywin32 = {version = ">=304", markers = "sys_platform == \"win32\""} | |||
| requests = ">=2.26.0" | |||
| urllib3 = ">=1.26.0" | |||
| [package.extras] | |||
| dev = ["coverage (==7.2.7)", "pytest (==7.4.2)", "pytest-cov (==4.1.0)", "pytest-timeout (==2.1.0)", "ruff (==0.1.8)"] | |||
| docs = ["myst-parser (==0.18.0)", "sphinx (==5.1.1)"] | |||
| ssh = ["paramiko (>=2.4.3)"] | |||
| websockets = ["websocket-client (>=1.3.0)"] | |||
| [[package]] | |||
| name = "docstring-parser" | |||
| version = "0.16" | |||
| @@ -3309,6 +3357,21 @@ typing-extensions = "*" | |||
| [package.extras] | |||
| dev = ["Pillow", "absl-py", "black", "ipython", "nose2", "pandas", "pytype", "pyyaml"] | |||
| [[package]] | |||
| name = "google-pasta" | |||
| version = "0.2.0" | |||
| description = "pasta is an AST-based Python refactoring library" | |||
| optional = false | |||
| python-versions = "*" | |||
| files = [ | |||
| {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, | |||
| {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, | |||
| {file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"}, | |||
| ] | |||
| [package.dependencies] | |||
| six = "*" | |||
| [[package]] | |||
| name = "google-resumable-media" | |||
| version = "2.7.2" | |||
| @@ -3930,22 +3993,22 @@ files = [ | |||
| [[package]] | |||
| name = "importlib-metadata" | |||
| version = "8.4.0" | |||
| version = "6.11.0" | |||
| description = "Read metadata from Python packages" | |||
| optional = false | |||
| python-versions = ">=3.8" | |||
| files = [ | |||
| {file = "importlib_metadata-8.4.0-py3-none-any.whl", hash = "sha256:66f342cc6ac9818fc6ff340576acd24d65ba0b3efabb2b4ac08b598965a4a2f1"}, | |||
| {file = "importlib_metadata-8.4.0.tar.gz", hash = "sha256:9a547d3bc3608b025f93d403fdd1aae741c24fbb8314df4b155675742ce303c5"}, | |||
| {file = "importlib_metadata-6.11.0-py3-none-any.whl", hash = "sha256:f0afba6205ad8f8947c7d338b5342d5db2afbfd82f9cbef7879a9539cc12eb9b"}, | |||
| {file = "importlib_metadata-6.11.0.tar.gz", hash = "sha256:1231cf92d825c9e03cfc4da076a16de6422c863558229ea0b22b675657463443"}, | |||
| ] | |||
| [package.dependencies] | |||
| zipp = ">=0.5" | |||
| [package.extras] | |||
| doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] | |||
| docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] | |||
| perf = ["ipython"] | |||
| test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] | |||
| testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)", "pytest-ruff"] | |||
| [[package]] | |||
| name = "importlib-resources" | |||
| @@ -4929,6 +4992,22 @@ files = [ | |||
| [package.extras] | |||
| test = ["mypy (>=1.0)", "pytest (>=7.0.0)"] | |||
| [[package]] | |||
| name = "mock" | |||
| version = "4.0.3" | |||
| description = "Rolling backport of unittest.mock for all Pythons" | |||
| optional = false | |||
| python-versions = ">=3.6" | |||
| files = [ | |||
| {file = "mock-4.0.3-py3-none-any.whl", hash = "sha256:122fcb64ee37cfad5b3f48d7a7d51875d7031aaf3d8be7c42e2bee25044eee62"}, | |||
| {file = "mock-4.0.3.tar.gz", hash = "sha256:7d3fbbde18228f4ff2f1f119a45cdffa458b4c0dee32eb4d2bb2f82554bac7bc"}, | |||
| ] | |||
| [package.extras] | |||
| build = ["blurb", "twine", "wheel"] | |||
| docs = ["sphinx"] | |||
| test = ["pytest (<5.4)", "pytest-cov"] | |||
| [[package]] | |||
| name = "monotonic" | |||
| version = "1.6" | |||
| @@ -5128,6 +5207,30 @@ files = [ | |||
| {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, | |||
| ] | |||
| [[package]] | |||
| name = "multiprocess" | |||
| version = "0.70.16" | |||
| description = "better multiprocessing and multithreading in Python" | |||
| optional = false | |||
| python-versions = ">=3.8" | |||
| files = [ | |||
| {file = "multiprocess-0.70.16-pp310-pypy310_pp73-macosx_10_13_x86_64.whl", hash = "sha256:476887be10e2f59ff183c006af746cb6f1fd0eadcfd4ef49e605cbe2659920ee"}, | |||
| {file = "multiprocess-0.70.16-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d951bed82c8f73929ac82c61f01a7b5ce8f3e5ef40f5b52553b4f547ce2b08ec"}, | |||
| {file = "multiprocess-0.70.16-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:37b55f71c07e2d741374998c043b9520b626a8dddc8b3129222ca4f1a06ef67a"}, | |||
| {file = "multiprocess-0.70.16-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:ba8c31889abf4511c7308a8c52bb4a30b9d590e7f58523302ba00237702ca054"}, | |||
| {file = "multiprocess-0.70.16-pp39-pypy39_pp73-macosx_10_13_x86_64.whl", hash = "sha256:0dfd078c306e08d46d7a8d06fb120313d87aa43af60d66da43ffff40b44d2f41"}, | |||
| {file = "multiprocess-0.70.16-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e7b9d0f307cd9bd50851afaac0dba2cb6c44449efff697df7c7645f7d3f2be3a"}, | |||
| {file = "multiprocess-0.70.16-py310-none-any.whl", hash = "sha256:c4a9944c67bd49f823687463660a2d6daae94c289adff97e0f9d696ba6371d02"}, | |||
| {file = "multiprocess-0.70.16-py311-none-any.whl", hash = "sha256:af4cabb0dac72abfb1e794fa7855c325fd2b55a10a44628a3c1ad3311c04127a"}, | |||
| {file = "multiprocess-0.70.16-py312-none-any.whl", hash = "sha256:fc0544c531920dde3b00c29863377f87e1632601092ea2daca74e4beb40faa2e"}, | |||
| {file = "multiprocess-0.70.16-py38-none-any.whl", hash = "sha256:a71d82033454891091a226dfc319d0cfa8019a4e888ef9ca910372a446de4435"}, | |||
| {file = "multiprocess-0.70.16-py39-none-any.whl", hash = "sha256:a0bafd3ae1b732eac64be2e72038231c1ba97724b60b09400d68f229fcc2fbf3"}, | |||
| {file = "multiprocess-0.70.16.tar.gz", hash = "sha256:161af703d4652a0e1410be6abccecde4a7ddffd19341be0a7011b94aeb171ac1"}, | |||
| ] | |||
| [package.dependencies] | |||
| dill = ">=0.3.8" | |||
| [[package]] | |||
| name = "multitasking" | |||
| version = "0.0.11" | |||
| @@ -5955,6 +6058,23 @@ sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-d | |||
| test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] | |||
| xml = ["lxml (>=4.9.2)"] | |||
| [[package]] | |||
| name = "pathos" | |||
| version = "0.3.2" | |||
| description = "parallel graph management and execution in heterogeneous computing" | |||
| optional = false | |||
| python-versions = ">=3.8" | |||
| files = [ | |||
| {file = "pathos-0.3.2-py3-none-any.whl", hash = "sha256:d669275e6eb4b3fbcd2846d7a6d1bba315fe23add0c614445ba1408d8b38bafe"}, | |||
| {file = "pathos-0.3.2.tar.gz", hash = "sha256:4f2a42bc1e10ccf0fe71961e7145fc1437018b6b21bd93b2446abc3983e49a7a"}, | |||
| ] | |||
| [package.dependencies] | |||
| dill = ">=0.3.8" | |||
| multiprocess = ">=0.70.16" | |||
| pox = ">=0.3.4" | |||
| ppft = ">=1.7.6.8" | |||
| [[package]] | |||
| name = "peewee" | |||
| version = "3.17.6" | |||
| @@ -6196,6 +6316,31 @@ dev = ["black", "flake8", "flake8-print", "isort", "pre-commit"] | |||
| sentry = ["django", "sentry-sdk"] | |||
| test = ["coverage", "django", "flake8", "freezegun (==0.3.15)", "mock (>=2.0.0)", "pylint", "pytest", "pytest-timeout"] | |||
| [[package]] | |||
| name = "pox" | |||
| version = "0.3.4" | |||
| description = "utilities for filesystem exploration and automated builds" | |||
| optional = false | |||
| python-versions = ">=3.8" | |||
| files = [ | |||
| {file = "pox-0.3.4-py3-none-any.whl", hash = "sha256:651b8ae8a7b341b7bfd267f67f63106daeb9805f1ac11f323d5280d2da93fdb6"}, | |||
| {file = "pox-0.3.4.tar.gz", hash = "sha256:16e6eca84f1bec3828210b06b052adf04cf2ab20c22fd6fbef5f78320c9a6fed"}, | |||
| ] | |||
| [[package]] | |||
| name = "ppft" | |||
| version = "1.7.6.8" | |||
| description = "distributed and parallel Python" | |||
| optional = false | |||
| python-versions = ">=3.8" | |||
| files = [ | |||
| {file = "ppft-1.7.6.8-py3-none-any.whl", hash = "sha256:de2dd4b1b080923dd9627fbdea52649fd741c752fce4f3cf37e26f785df23d9b"}, | |||
| {file = "ppft-1.7.6.8.tar.gz", hash = "sha256:76a429a7d7b74c4d743f6dba8351e58d62b6432ed65df9fe204790160dab996d"}, | |||
| ] | |||
| [package.extras] | |||
| dill = ["dill (>=0.3.8)"] | |||
| [[package]] | |||
| name = "primp" | |||
| version = "0.6.1" | |||
| @@ -8004,6 +8149,84 @@ tensorflow = ["safetensors[numpy]", "tensorflow (>=2.11.0)"] | |||
| testing = ["h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "hypothesis (>=6.70.2)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "safetensors[numpy]", "setuptools-rust (>=1.5.2)"] | |||
| torch = ["safetensors[numpy]", "torch (>=1.10)"] | |||
| [[package]] | |||
| name = "sagemaker" | |||
| version = "2.231.0" | |||
| description = "Open source library for training and deploying models on Amazon SageMaker." | |||
| optional = false | |||
| python-versions = ">=3.8" | |||
| files = [ | |||
| {file = "sagemaker-2.231.0-py3-none-any.whl", hash = "sha256:5b6d84484a58c6ac8b22af42c6c5e0ea3c5f42d719345fe6aafba42f93635000"}, | |||
| {file = "sagemaker-2.231.0.tar.gz", hash = "sha256:d49ee9c35725832dd9810708938af723201b831e82924a3a6ac1c4260a3d8239"}, | |||
| ] | |||
| [package.dependencies] | |||
| attrs = ">=23.1.0,<24" | |||
| boto3 = ">=1.34.142,<2.0" | |||
| cloudpickle = "2.2.1" | |||
| docker = "*" | |||
| google-pasta = "*" | |||
| importlib-metadata = ">=1.4.0,<7.0" | |||
| jsonschema = "*" | |||
| numpy = ">=1.9.0,<2.0" | |||
| packaging = ">=20.0" | |||
| pandas = "*" | |||
| pathos = "*" | |||
| platformdirs = "*" | |||
| protobuf = ">=3.12,<5.0" | |||
| psutil = "*" | |||
| pyyaml = ">=6.0,<7.0" | |||
| requests = "*" | |||
| sagemaker-core = ">=1.0.0,<2.0.0" | |||
| schema = "*" | |||
| smdebug-rulesconfig = "1.0.1" | |||
| tblib = ">=1.7.0,<4" | |||
| tqdm = "*" | |||
| urllib3 = ">=1.26.8,<3.0.0" | |||
| [package.extras] | |||
| all = ["accelerate (>=0.24.1,<=0.27.0)", "docker (>=5.0.2,<8.0.0)", "fastapi (>=0.111.0)", "nest-asyncio", "pyspark (==3.3.1)", "pyyaml (>=5.4.1,<7)", "sagemaker-feature-store-pyspark-3-3", "sagemaker-schema-inference-artifacts (>=0.0.5)", "scipy (==1.10.1)", "urllib3 (>=1.26.8,<3.0.0)", "uvicorn (>=0.30.1)"] | |||
| feature-processor = ["pyspark (==3.3.1)", "sagemaker-feature-store-pyspark-3-3"] | |||
| huggingface = ["accelerate (>=0.24.1,<=0.27.0)", "fastapi (>=0.111.0)", "nest-asyncio", "sagemaker-schema-inference-artifacts (>=0.0.5)", "uvicorn (>=0.30.1)"] | |||
| local = ["docker (>=5.0.2,<8.0.0)", "pyyaml (>=5.4.1,<7)", "urllib3 (>=1.26.8,<3.0.0)"] | |||
| scipy = ["scipy (==1.10.1)"] | |||
| test = ["accelerate (>=0.24.1,<=0.27.0)", "apache-airflow (==2.9.3)", "apache-airflow-providers-amazon (==7.2.1)", "attrs (>=23.1.0,<24)", "awslogs (==0.14.0)", "black (==24.3.0)", "build[virtualenv] (==1.2.1)", "cloudpickle (==2.2.1)", "contextlib2 (==21.6.0)", "coverage (>=5.2,<6.2)", "docker (>=5.0.2,<8.0.0)", "fabric (==2.6.0)", "fastapi (>=0.111.0)", "flake8 (==4.0.1)", "huggingface-hub (>=0.23.4)", "jinja2 (==3.1.4)", "mlflow (>=2.12.2,<2.13)", "mock (==4.0.3)", "nbformat (>=5.9,<6)", "nest-asyncio", "numpy (>=1.24.0)", "onnx (>=1.15.0)", "pandas (>=1.3.5,<1.5)", "pillow (>=10.0.1,<=11)", "pyspark (==3.3.1)", "pytest (==6.2.5)", "pytest-cov (==3.0.0)", "pytest-rerunfailures (==10.2)", "pytest-timeout (==2.1.0)", "pytest-xdist (==2.4.0)", "pyvis (==0.2.1)", "pyyaml (==6.0)", "pyyaml (>=5.4.1,<7)", "requests (==2.32.2)", "sagemaker-experiments (==0.1.35)", "sagemaker-feature-store-pyspark-3-3", "sagemaker-schema-inference-artifacts (>=0.0.5)", "schema (==0.7.5)", "scikit-learn (==1.3.0)", "scipy (==1.10.1)", "stopit (==1.1.2)", "tensorflow (>=2.1,<=2.16)", "tox (==3.24.5)", "tritonclient[http] (<2.37.0)", "urllib3 (>=1.26.8,<3.0.0)", "uvicorn (>=0.30.1)", "xgboost (>=1.6.2,<=1.7.6)"] | |||
| [[package]] | |||
| name = "sagemaker-core" | |||
| version = "1.0.2" | |||
| description = "An python package for sagemaker core functionalities" | |||
| optional = false | |||
| python-versions = ">=3.8" | |||
| files = [ | |||
| {file = "sagemaker_core-1.0.2-py3-none-any.whl", hash = "sha256:ce8d38a4a32efa83e4bc037a8befc7e29f87cd3eaf99acc4472b607f75a0f45a"}, | |||
| {file = "sagemaker_core-1.0.2.tar.gz", hash = "sha256:8fb942aac5e7ed928dab512ffe6facf8c6bdd4595df63c59c0bd0795ea434f8d"}, | |||
| ] | |||
| [package.dependencies] | |||
| boto3 = ">=1.34.0,<2.0.0" | |||
| importlib-metadata = ">=1.4.0,<7.0" | |||
| jsonschema = "<5.0.0" | |||
| mock = ">4.0,<5.0" | |||
| platformdirs = ">=4.0.0,<5.0.0" | |||
| pydantic = ">=1.7.0,<3.0.0" | |||
| PyYAML = ">=6.0,<7.0" | |||
| rich = ">=13.0.0,<14.0.0" | |||
| [package.extras] | |||
| codegen = ["black (>=24.3.0,<25.0.0)", "pandas (>=2.0.0,<3.0.0)", "pylint (>=3.0.0,<4.0.0)", "pytest (>=8.0.0,<9.0.0)"] | |||
| [[package]] | |||
| name = "schema" | |||
| version = "0.7.7" | |||
| description = "Simple data validation library" | |||
| optional = false | |||
| python-versions = "*" | |||
| files = [ | |||
| {file = "schema-0.7.7-py2.py3-none-any.whl", hash = "sha256:5d976a5b50f36e74e2157b47097b60002bd4d42e65425fcc9c9befadb4255dde"}, | |||
| {file = "schema-0.7.7.tar.gz", hash = "sha256:7da553abd2958a19dc2547c388cde53398b39196175a9be59ea1caf5ab0a1807"}, | |||
| ] | |||
| [[package]] | |||
| name = "scikit-learn" | |||
| version = "1.5.1" | |||
| @@ -8276,6 +8499,17 @@ files = [ | |||
| {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, | |||
| ] | |||
| [[package]] | |||
| name = "smdebug-rulesconfig" | |||
| version = "1.0.1" | |||
| description = "SMDebug RulesConfig" | |||
| optional = false | |||
| python-versions = ">=2.7" | |||
| files = [ | |||
| {file = "smdebug_rulesconfig-1.0.1-py2.py3-none-any.whl", hash = "sha256:104da3e6931ecf879dfc687ca4bbb3bee5ea2bc27f4478e9dbb3ee3655f1ae61"}, | |||
| {file = "smdebug_rulesconfig-1.0.1.tar.gz", hash = "sha256:7a19e6eb2e6bcfefbc07e4a86ef7a88f32495001a038bf28c7d8e77ab793fcd6"}, | |||
| ] | |||
| [[package]] | |||
| name = "sniffio" | |||
| version = "1.3.1" | |||
| @@ -8473,6 +8707,17 @@ files = [ | |||
| [package.extras] | |||
| widechars = ["wcwidth"] | |||
| [[package]] | |||
| name = "tblib" | |||
| version = "3.0.0" | |||
| description = "Traceback serialization library." | |||
| optional = false | |||
| python-versions = ">=3.8" | |||
| files = [ | |||
| {file = "tblib-3.0.0-py3-none-any.whl", hash = "sha256:80a6c77e59b55e83911e1e607c649836a69c103963c5f28a46cbeef44acf8129"}, | |||
| {file = "tblib-3.0.0.tar.gz", hash = "sha256:93622790a0a29e04f0346458face1e144dc4d32f493714c6c3dff82a4adb77e6"}, | |||
| ] | |||
| [[package]] | |||
| name = "tcvectordb" | |||
| version = "1.3.2" | |||
| @@ -10126,4 +10371,4 @@ cffi = ["cffi (>=1.11)"] | |||
| [metadata] | |||
| lock-version = "2.0" | |||
| python-versions = ">=3.10,<3.13" | |||
| content-hash = "78c7db0bf525a72f4c8309e3363304d1a0a23cf0a6836bfb974a38a1fcde9158" | |||
| content-hash = "c3c637d643f4dcb3e35d0e7f2a3a4fbaf2a730512a4ca31adce5884c94f07f57" | |||
| @@ -113,6 +113,7 @@ azure-identity = "1.16.1" | |||
| azure-storage-blob = "12.13.0" | |||
| beautifulsoup4 = "4.12.2" | |||
| boto3 = "1.34.148" | |||
| sagemaker = "2.231.0" | |||
| bs4 = "~0.0.1" | |||
| cachetools = "~5.3.0" | |||
| celery = "~5.3.6" | |||