| @@ -0,0 +1,132 @@ | |||
| """Base classes for LLM-powered router chains.""" | |||
| from __future__ import annotations | |||
| import json | |||
| from typing import Any, Dict, List, Optional, Type, cast, NamedTuple | |||
| from langchain.chains.base import Chain | |||
| from pydantic import root_validator | |||
| from langchain.chains import LLMChain | |||
| from langchain.prompts import BasePromptTemplate | |||
| from langchain.schema import BaseOutputParser, OutputParserException, BaseLanguageModel | |||
| class Route(NamedTuple): | |||
| destination: Optional[str] | |||
| next_inputs: Dict[str, Any] | |||
| class LLMRouterChain(Chain): | |||
| """A router chain that uses an LLM chain to perform routing.""" | |||
| llm_chain: LLMChain | |||
| """LLM chain used to perform routing""" | |||
| @root_validator() | |||
| def validate_prompt(cls, values: dict) -> dict: | |||
| prompt = values["llm_chain"].prompt | |||
| if prompt.output_parser is None: | |||
| raise ValueError( | |||
| "LLMRouterChain requires base llm_chain prompt to have an output" | |||
| " parser that converts LLM text output to a dictionary with keys" | |||
| " 'destination' and 'next_inputs'. Received a prompt with no output" | |||
| " parser." | |||
| ) | |||
| return values | |||
| @property | |||
| def input_keys(self) -> List[str]: | |||
| """Will be whatever keys the LLM chain prompt expects. | |||
| :meta private: | |||
| """ | |||
| return self.llm_chain.input_keys | |||
| def _validate_outputs(self, outputs: Dict[str, Any]) -> None: | |||
| super()._validate_outputs(outputs) | |||
| if not isinstance(outputs["next_inputs"], dict): | |||
| raise ValueError | |||
| def _call( | |||
| self, | |||
| inputs: Dict[str, Any] | |||
| ) -> Dict[str, Any]: | |||
| output = cast( | |||
| Dict[str, Any], | |||
| self.llm_chain.predict_and_parse(**inputs), | |||
| ) | |||
| return output | |||
| @classmethod | |||
| def from_llm( | |||
| cls, llm: BaseLanguageModel, prompt: BasePromptTemplate, **kwargs: Any | |||
| ) -> LLMRouterChain: | |||
| """Convenience constructor.""" | |||
| llm_chain = LLMChain(llm=llm, prompt=prompt) | |||
| return cls(llm_chain=llm_chain, **kwargs) | |||
| @property | |||
| def output_keys(self) -> List[str]: | |||
| return ["destination", "next_inputs"] | |||
| def route(self, inputs: Dict[str, Any]) -> Route: | |||
| result = self(inputs) | |||
| return Route(result["destination"], result["next_inputs"]) | |||
| class RouterOutputParser(BaseOutputParser[Dict[str, str]]): | |||
| """Parser for output of router chain int he multi-prompt chain.""" | |||
| default_destination: str = "DEFAULT" | |||
| next_inputs_type: Type = str | |||
| next_inputs_inner_key: str = "input" | |||
| def parse_json_markdown(self, json_string: str) -> dict: | |||
| # Remove the triple backticks if present | |||
| json_string = json_string.replace("```json", "").replace("```", "") | |||
| # Strip whitespace and newlines from the start and end | |||
| json_string = json_string.strip() | |||
| # Parse the JSON string into a Python dictionary | |||
| parsed = json.loads(json_string) | |||
| return parsed | |||
| def parse_and_check_json_markdown(self, text: str, expected_keys: List[str]) -> dict: | |||
| try: | |||
| json_obj = self.parse_json_markdown(text) | |||
| except json.JSONDecodeError as e: | |||
| raise OutputParserException(f"Got invalid JSON object. Error: {e}") | |||
| for key in expected_keys: | |||
| if key not in json_obj: | |||
| raise OutputParserException( | |||
| f"Got invalid return object. Expected key `{key}` " | |||
| f"to be present, but got {json_obj}" | |||
| ) | |||
| return json_obj | |||
| def parse(self, text: str) -> Dict[str, Any]: | |||
| try: | |||
| expected_keys = ["destination", "next_inputs"] | |||
| parsed = self.parse_and_check_json_markdown(text, expected_keys) | |||
| if not isinstance(parsed["destination"], str): | |||
| raise ValueError("Expected 'destination' to be a string.") | |||
| if not isinstance(parsed["next_inputs"], self.next_inputs_type): | |||
| raise ValueError( | |||
| f"Expected 'next_inputs' to be {self.next_inputs_type}." | |||
| ) | |||
| parsed["next_inputs"] = {self.next_inputs_inner_key: parsed["next_inputs"]} | |||
| if ( | |||
| parsed["destination"].strip().lower() | |||
| == self.default_destination.lower() | |||
| ): | |||
| parsed["destination"] = None | |||
| else: | |||
| parsed["destination"] = parsed["destination"].strip() | |||
| return parsed | |||
| except Exception as e: | |||
| raise OutputParserException( | |||
| f"Parsing text\n{text}\n raised following error:\n{e}" | |||
| ) | |||
| @@ -1,18 +1,18 @@ | |||
| from typing import Optional, List | |||
| from langchain.callbacks import SharedCallbackManager | |||
| from langchain.callbacks import SharedCallbackManager, CallbackManager | |||
| from langchain.chains import SequentialChain | |||
| from langchain.chains.base import Chain | |||
| from langchain.memory.chat_memory import BaseChatMemory | |||
| from core.agent.agent_builder import AgentBuilder | |||
| from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler | |||
| from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler | |||
| from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler | |||
| from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler | |||
| from core.chain.chain_builder import ChainBuilder | |||
| from core.constant import llm_constant | |||
| from core.chain.multi_dataset_router_chain import MultiDatasetRouterChain | |||
| from core.conversation_message_task import ConversationMessageTask | |||
| from core.tool.dataset_tool_builder import DatasetToolBuilder | |||
| from extensions.ext_database import db | |||
| from models.dataset import Dataset | |||
| class MainChainBuilder: | |||
| @@ -31,8 +31,7 @@ class MainChainBuilder: | |||
| tenant_id=tenant_id, | |||
| agent_mode=agent_mode, | |||
| memory=memory, | |||
| dataset_tool_callback_handler=DatasetToolCallbackHandler(conversation_message_task), | |||
| agent_loop_gather_callback_handler=chain_callback_handler.agent_loop_gather_callback_handler | |||
| conversation_message_task=conversation_message_task | |||
| ) | |||
| chains += tool_chains | |||
| @@ -59,15 +58,15 @@ class MainChainBuilder: | |||
| @classmethod | |||
| def get_agent_chains(cls, tenant_id: str, agent_mode: dict, memory: Optional[BaseChatMemory], | |||
| dataset_tool_callback_handler: DatasetToolCallbackHandler, | |||
| agent_loop_gather_callback_handler: AgentLoopGatherCallbackHandler): | |||
| conversation_message_task: ConversationMessageTask): | |||
| # agent mode | |||
| chains = [] | |||
| if agent_mode and agent_mode.get('enabled'): | |||
| tools = agent_mode.get('tools', []) | |||
| pre_fixed_chains = [] | |||
| agent_tools = [] | |||
| # agent_tools = [] | |||
| datasets = [] | |||
| for tool in tools: | |||
| tool_type = list(tool.keys())[0] | |||
| tool_config = list(tool.values())[0] | |||
| @@ -76,34 +75,27 @@ class MainChainBuilder: | |||
| if chain: | |||
| pre_fixed_chains.append(chain) | |||
| elif tool_type == "dataset": | |||
| dataset_tool = DatasetToolBuilder.build_dataset_tool( | |||
| tenant_id=tenant_id, | |||
| dataset_id=tool_config.get("id"), | |||
| response_mode='no_synthesizer', # "compact" | |||
| callback_handler=dataset_tool_callback_handler | |||
| ) | |||
| # get dataset from dataset id | |||
| dataset = db.session.query(Dataset).filter( | |||
| Dataset.tenant_id == tenant_id, | |||
| Dataset.id == tool_config.get("id") | |||
| ).first() | |||
| if dataset_tool: | |||
| agent_tools.append(dataset_tool) | |||
| if dataset: | |||
| datasets.append(dataset) | |||
| # add pre-fixed chains | |||
| chains += pre_fixed_chains | |||
| if len(agent_tools) == 1: | |||
| if len(datasets) > 0: | |||
| # tool to chain | |||
| tool_chain = ChainBuilder.to_tool_chain(tool=agent_tools[0], output_key='tool_output') | |||
| chains.append(tool_chain) | |||
| elif len(agent_tools) > 1: | |||
| # build agent config | |||
| agent_chain = AgentBuilder.to_agent_chain( | |||
| multi_dataset_router_chain = MultiDatasetRouterChain.from_datasets( | |||
| tenant_id=tenant_id, | |||
| tools=agent_tools, | |||
| memory=memory, | |||
| dataset_tool_callback_handler=dataset_tool_callback_handler, | |||
| agent_loop_gather_callback_handler=agent_loop_gather_callback_handler | |||
| datasets=datasets, | |||
| conversation_message_task=conversation_message_task, | |||
| callback_manager=CallbackManager([DifyStdOutCallbackHandler()]) | |||
| ) | |||
| chains.append(agent_chain) | |||
| chains.append(multi_dataset_router_chain) | |||
| final_output_key = cls.get_chains_output_key(chains) | |||
| @@ -0,0 +1,138 @@ | |||
| from typing import Mapping, List, Dict, Any, Optional | |||
| from langchain import LLMChain, PromptTemplate, ConversationChain | |||
| from langchain.callbacks import CallbackManager | |||
| from langchain.chains.base import Chain | |||
| from langchain.schema import BaseLanguageModel | |||
| from pydantic import Extra | |||
| from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler | |||
| from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler | |||
| from core.chain.llm_router_chain import LLMRouterChain, RouterOutputParser | |||
| from core.conversation_message_task import ConversationMessageTask | |||
| from core.llm.llm_builder import LLMBuilder | |||
| from core.tool.dataset_tool_builder import DatasetToolBuilder | |||
| from core.tool.llama_index_tool import EnhanceLlamaIndexTool | |||
| from models.dataset import Dataset | |||
| MULTI_PROMPT_ROUTER_TEMPLATE = """ | |||
| Given a raw text input to a language model select the model prompt best suited for \ | |||
| the input. You will be given the names of the available prompts and a description of \ | |||
| what the prompt is best suited for. You may also revise the original input if you \ | |||
| think that revising it will ultimately lead to a better response from the language \ | |||
| model. | |||
| << FORMATTING >> | |||
| Return a markdown code snippet with a JSON object formatted to look like: | |||
| ```json | |||
| {{{{ | |||
| "destination": string \\ name of the prompt to use or "DEFAULT" | |||
| "next_inputs": string \\ a potentially modified version of the original input | |||
| }}}} | |||
| ``` | |||
| REMEMBER: "destination" MUST be one of the candidate prompt names specified below OR \ | |||
| it can be "DEFAULT" if the input is not well suited for any of the candidate prompts. | |||
| REMEMBER: "next_inputs" can just be the original input if you don't think any \ | |||
| modifications are needed. | |||
| << CANDIDATE PROMPTS >> | |||
| {destinations} | |||
| << INPUT >> | |||
| {{input}} | |||
| << OUTPUT >> | |||
| """ | |||
| class MultiDatasetRouterChain(Chain): | |||
| """Use a single chain to route an input to one of multiple candidate chains.""" | |||
| router_chain: LLMRouterChain | |||
| """Chain for deciding a destination chain and the input to it.""" | |||
| dataset_tools: Mapping[str, EnhanceLlamaIndexTool] | |||
| """Map of name to candidate chains that inputs can be routed to.""" | |||
| class Config: | |||
| """Configuration for this pydantic object.""" | |||
| extra = Extra.forbid | |||
| arbitrary_types_allowed = True | |||
| @property | |||
| def input_keys(self) -> List[str]: | |||
| """Will be whatever keys the router chain prompt expects. | |||
| :meta private: | |||
| """ | |||
| return self.router_chain.input_keys | |||
| @property | |||
| def output_keys(self) -> List[str]: | |||
| return ["text"] | |||
| @classmethod | |||
| def from_datasets( | |||
| cls, | |||
| tenant_id: str, | |||
| datasets: List[Dataset], | |||
| conversation_message_task: ConversationMessageTask, | |||
| **kwargs: Any, | |||
| ): | |||
| """Convenience constructor for instantiating from destination prompts.""" | |||
| llm_callback_manager = CallbackManager([DifyStdOutCallbackHandler()]) | |||
| llm = LLMBuilder.to_llm( | |||
| tenant_id=tenant_id, | |||
| model_name='gpt-3.5-turbo', | |||
| temperature=0, | |||
| max_tokens=1024, | |||
| callback_manager=llm_callback_manager | |||
| ) | |||
| destinations = [f"{d.id}: {d.description}" for d in datasets] | |||
| destinations_str = "\n".join(destinations) | |||
| router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format( | |||
| destinations=destinations_str | |||
| ) | |||
| router_prompt = PromptTemplate( | |||
| template=router_template, | |||
| input_variables=["input"], | |||
| output_parser=RouterOutputParser(), | |||
| ) | |||
| router_chain = LLMRouterChain.from_llm(llm, router_prompt) | |||
| dataset_tools = {} | |||
| for dataset in datasets: | |||
| dataset_tool = DatasetToolBuilder.build_dataset_tool( | |||
| dataset=dataset, | |||
| response_mode='no_synthesizer', # "compact" | |||
| callback_handler=DatasetToolCallbackHandler(conversation_message_task) | |||
| ) | |||
| dataset_tools[dataset.id] = dataset_tool | |||
| return cls( | |||
| router_chain=router_chain, | |||
| dataset_tools=dataset_tools, | |||
| **kwargs, | |||
| ) | |||
| def _call( | |||
| self, | |||
| inputs: Dict[str, Any] | |||
| ) -> Dict[str, Any]: | |||
| if len(self.dataset_tools) == 0: | |||
| return {"text": ''} | |||
| elif len(self.dataset_tools) == 1: | |||
| return {"text": next(iter(self.dataset_tools.values())).run(inputs['input'])} | |||
| route = self.router_chain.route(inputs) | |||
| if not route.destination: | |||
| return {"text": ''} | |||
| elif route.destination in self.dataset_tools: | |||
| return {"text": self.dataset_tools[route.destination].run( | |||
| route.next_inputs['input'] | |||
| )} | |||
| else: | |||
| raise ValueError( | |||
| f"Received invalid destination chain name '{route.destination}'" | |||
| ) | |||
| @@ -10,24 +10,14 @@ from core.index.keyword_table_index import KeywordTableIndex | |||
| from core.index.vector_index import VectorIndex | |||
| from core.prompt.prompts import QUERY_KEYWORD_EXTRACT_TEMPLATE | |||
| from core.tool.llama_index_tool import EnhanceLlamaIndexTool | |||
| from extensions.ext_database import db | |||
| from models.dataset import Dataset | |||
| class DatasetToolBuilder: | |||
| @classmethod | |||
| def build_dataset_tool(cls, tenant_id: str, dataset_id: str, | |||
| def build_dataset_tool(cls, dataset: Dataset, | |||
| response_mode: str = "no_synthesizer", | |||
| callback_handler: Optional[DatasetToolCallbackHandler] = None): | |||
| # get dataset from dataset id | |||
| dataset = db.session.query(Dataset).filter( | |||
| Dataset.tenant_id == tenant_id, | |||
| Dataset.id == dataset_id | |||
| ).first() | |||
| if not dataset: | |||
| return None | |||
| if dataset.indexing_technique == "economy": | |||
| # use keyword table query | |||
| index = KeywordTableIndex(dataset=dataset).query_index | |||
| @@ -65,7 +55,7 @@ class DatasetToolBuilder: | |||
| index_tool_config = IndexToolConfig( | |||
| index=index, | |||
| name=f"dataset-{dataset_id}", | |||
| name=f"dataset-{dataset.id}", | |||
| description=description, | |||
| index_query_kwargs=query_kwargs, | |||
| tool_kwargs={ | |||
| @@ -75,7 +65,7 @@ class DatasetToolBuilder: | |||
| # return_direct: Whether to return LLM results directly or process the output data with an Output Parser | |||
| ) | |||
| index_callback_handler = DatasetIndexToolCallbackHandler(dataset_id=dataset_id) | |||
| index_callback_handler = DatasetIndexToolCallbackHandler(dataset_id=dataset.id) | |||
| return EnhanceLlamaIndexTool.from_tool_config( | |||
| tool_config=index_tool_config, | |||