Bläddra i källkod

Optimize knowledge retrieval performance by batching dataset quries. (#4917)

tags/0.6.11
JasonVV 1 år sedan
förälder
incheckning
7749b71fff
Inget konto är kopplat till bidragsgivarens mejladress

+ 4
- 1
api/core/rag/retrieval/dataset_retrieval.py Visa fil

@@ -329,6 +329,7 @@ class DatasetRetrieval:
"""
if not query:
return
dataset_queries = []
for dataset_id in dataset_ids:
dataset_query = DatasetQuery(
dataset_id=dataset_id,
@@ -338,7 +339,9 @@ class DatasetRetrieval:
created_by_role=user_from,
created_by=user_id
)
db.session.add(dataset_query)
dataset_queries.append(dataset_query)
if dataset_queries:
db.session.add_all(dataset_queries)
db.session.commit()

def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):

+ 23
- 18
api/core/workflow/nodes/knowledge_retrieval/knowledge_retrieval_node.py Visa fil

@@ -1,5 +1,7 @@
from typing import Any, cast

from sqlalchemy import func

from core.app.app_config.entities import DatasetRetrieveConfigEntity
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.entities.agent_entities import PlanningStrategy
@@ -73,30 +75,33 @@ class KnowledgeRetrievalNode(BaseNode):

def _fetch_dataset_retriever(self, node_data: KnowledgeRetrievalNodeData, query: str) -> list[
dict[str, Any]]:
"""
A dataset tool is a tool that can be used to retrieve information from a dataset
:param node_data: node data
:param query: query
"""
tools = []
available_datasets = []
dataset_ids = node_data.dataset_ids
for dataset_id in dataset_ids:
# get dataset from dataset id
dataset = db.session.query(Dataset).filter(
Dataset.tenant_id == self.tenant_id,
Dataset.id == dataset_id
).first()

# pass if dataset is not available
if not dataset:
continue
# Subquery: Count the number of available documents for each dataset
subquery = db.session.query(
Document.dataset_id,
func.count(Document.id).label('available_document_count')
).filter(
Document.indexing_status == 'completed',
Document.enabled == True,
Document.archived == False,
Document.dataset_id.in_(dataset_ids)
).group_by(Document.dataset_id).having(
func.count(Document.id) > 0
).subquery()

results = db.session.query(Dataset).join(
subquery, Dataset.id == subquery.c.dataset_id
).filter(
Dataset.tenant_id == self.tenant_id,
Dataset.id.in_(dataset_ids)
).all()

for dataset in results:
# pass if dataset is not available
if (dataset and dataset.available_document_count == 0
and dataset.available_document_count == 0):
if not dataset:
continue

available_datasets.append(dataset)
all_documents = []
dataset_retrieval = DatasetRetrieval()

Laddar…
Avbryt
Spara