| @@ -4,7 +4,7 @@ from typing import Any | |||
| from uuid import UUID, uuid4 | |||
| from numpy import ndarray | |||
| from pgvecto_rs.sqlalchemy import Vector | |||
| from pgvecto_rs.sqlalchemy import VECTOR | |||
| from pydantic import BaseModel, model_validator | |||
| from sqlalchemy import Float, String, create_engine, insert, select, text | |||
| from sqlalchemy import text as sql_text | |||
| @@ -67,7 +67,7 @@ class PGVectoRS(BaseVector): | |||
| ) | |||
| text: Mapped[str] = mapped_column(String) | |||
| meta: Mapped[dict] = mapped_column(postgresql.JSONB) | |||
| vector: Mapped[ndarray] = mapped_column(Vector(dim)) | |||
| vector: Mapped[ndarray] = mapped_column(VECTOR(dim)) | |||
| self._table = _Table | |||
| self._distance_op = "<=>" | |||
| @@ -105,7 +105,7 @@ class RelytVector(BaseVector): | |||
| redis_client.set(collection_exist_cache_key, 1, ex=3600) | |||
| def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs): | |||
| from pgvecto_rs.sqlalchemy import Vector | |||
| from pgvecto_rs.sqlalchemy import VECTOR | |||
| ids = [str(uuid.uuid1()) for _ in documents] | |||
| metadatas = [d.metadata for d in documents] | |||
| @@ -118,7 +118,7 @@ class RelytVector(BaseVector): | |||
| self._collection_name, | |||
| Base.metadata, | |||
| Column("id", TEXT, primary_key=True), | |||
| Column("embedding", Vector(len(embeddings[0]))), | |||
| Column("embedding", VECTOR(len(embeddings[0]))), | |||
| Column("document", String, nullable=True), | |||
| Column("metadata", JSON, nullable=True), | |||
| extend_existing=True, | |||
| @@ -169,7 +169,7 @@ class RelytVector(BaseVector): | |||
| Args: | |||
| ids: List of ids to delete. | |||
| """ | |||
| from pgvecto_rs.sqlalchemy import Vector | |||
| from pgvecto_rs.sqlalchemy import VECTOR | |||
| if ids is None: | |||
| raise ValueError("No ids provided to delete.") | |||
| @@ -179,7 +179,7 @@ class RelytVector(BaseVector): | |||
| self._collection_name, | |||
| Base.metadata, | |||
| Column("id", TEXT, primary_key=True), | |||
| Column("embedding", Vector(self.embedding_dimension)), | |||
| Column("embedding", VECTOR(self.embedding_dimension)), | |||
| Column("document", String, nullable=True), | |||
| Column("metadata", JSON, nullable=True), | |||
| extend_existing=True, | |||
| @@ -5619,23 +5619,25 @@ files = [ | |||
| [[package]] | |||
| name = "pgvecto-rs" | |||
| version = "0.1.4" | |||
| version = "0.2.1" | |||
| description = "Python binding for pgvecto.rs" | |||
| optional = false | |||
| python-versions = ">=3.8" | |||
| python-versions = "<3.13,>=3.8" | |||
| files = [ | |||
| {file = "pgvecto_rs-0.1.4-py3-none-any.whl", hash = "sha256:9b08a9e612f0cd65d1cc6e17a35b9bb5956187e0e3981bf6e997ff9e615c6116"}, | |||
| {file = "pgvecto_rs-0.1.4.tar.gz", hash = "sha256:078b96cff1f3d417169ad46cacef7fc4d644978bbd6725a5c24c0675de5030ab"}, | |||
| {file = "pgvecto_rs-0.2.1-py3-none-any.whl", hash = "sha256:b3ee2c465219469ad537b3efea2916477c6c576b3d6fd4298980d0733d12bb27"}, | |||
| {file = "pgvecto_rs-0.2.1.tar.gz", hash = "sha256:07046eaad2c4f75745f76de9ba483541909f1c595aced8d3434224a4f933daca"}, | |||
| ] | |||
| [package.dependencies] | |||
| numpy = ">=1.23" | |||
| SQLAlchemy = {version = ">=2.0.23", optional = true, markers = "extra == \"sqlalchemy\""} | |||
| toml = ">=0.10" | |||
| [package.extras] | |||
| django = ["Django (>=4.2)"] | |||
| psycopg3 = ["psycopg[binary] (>=3.1.12)"] | |||
| sdk = ["openai (>=1.2.2)", "pgvecto_rs[sqlalchemy]"] | |||
| sqlalchemy = ["SQLAlchemy (>=2.0.23)", "pgvecto_rs[psycopg3]"] | |||
| sqlalchemy = ["SQLAlchemy (>=2.0.23)"] | |||
| [[package]] | |||
| name = "pgvector" | |||
| @@ -6131,10 +6133,7 @@ files = [ | |||
| [package.dependencies] | |||
| annotated-types = ">=0.4.0" | |||
| pydantic-core = "2.20.1" | |||
| typing-extensions = [ | |||
| {version = ">=4.6.1", markers = "python_version < \"3.13\""}, | |||
| {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, | |||
| ] | |||
| typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} | |||
| [package.extras] | |||
| email = ["email-validator (>=2.0.0)"] | |||
| @@ -9501,5 +9500,5 @@ cffi = ["cffi (>=1.11)"] | |||
| [metadata] | |||
| lock-version = "2.0" | |||
| python-versions = "^3.10" | |||
| content-hash = "ca55e4a4bb354fe969cc73c823557525c7598b0375e8791fcd77febc59e03b96" | |||
| python-versions = ">=3.10,<3.13" | |||
| content-hash = "50acbb78f2a273dfa8683d9d292596e89d13a420c6ecb1afad331f2c38dd1423" | |||
| @@ -154,7 +154,7 @@ pydantic_extra_types = "~2.9.0" | |||
| pydub = "~0.25.1" | |||
| pyjwt = "~2.8.0" | |||
| pypdfium2 = "~4.17.0" | |||
| python = "^3.10" | |||
| python = ">=3.10,<3.13" | |||
| python-docx = "~1.1.0" | |||
| python-dotenv = "1.0.0" | |||
| pyyaml = "~6.0.1" | |||
| @@ -204,7 +204,7 @@ cloudscraper = "1.2.71" | |||
| [tool.poetry.group.vdb.dependencies] | |||
| chromadb = "0.5.1" | |||
| oracledb = "~2.2.1" | |||
| pgvecto-rs = "0.1.4" | |||
| pgvecto-rs = { version = "~0.2.1", extras = ['sqlalchemy'] } | |||
| pgvector = "0.2.5" | |||
| pymilvus = "~2.4.4" | |||
| pymysql = "1.1.1" | |||
| @@ -418,7 +418,7 @@ services: | |||
| # pgvecto-rs vector store | |||
| pgvecto-rs: | |||
| image: tensorchord/pgvecto-rs:pg16-v0.2.0 | |||
| image: tensorchord/pgvecto-rs:pg16-v0.3.0 | |||
| profiles: | |||
| - pgvecto-rs | |||
| restart: always | |||