Quellcode durchsuchen

update qdrant migrate command (#2260)

Co-authored-by: jyong <jyong@dify.ai>
tags/0.5.3
Jyong vor 1 Jahr
Ursprung
Commit
409e0c8e1c
Es ist kein Account mit der E-Mail-Adresse des Committers verbunden
1 geänderte Dateien mit 16 neuen und 49 gelöschten Zeilen
  1. 16
    49
      api/commands.py

+ 16
- 49
api/commands.py Datei anzeigen

@@ -339,26 +339,7 @@ def create_qdrant_indexes():

)
except Exception:
try:
embedding_model = model_manager.get_default_model_instance(
tenant_id=dataset.tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
dataset.embedding_model = embedding_model.model
dataset.embedding_model_provider = embedding_model.provider
except Exception:

provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.SYSTEM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
continue
embeddings = CacheEmbedding(embedding_model)

from core.index.vector_index.qdrant_vector_index import QdrantConfig, QdrantVectorIndex
@@ -405,7 +386,7 @@ def update_qdrant_indexes():
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
model_manager = ModelManager()
page += 1
for dataset in datasets:
if dataset.index_struct_dict:
@@ -413,23 +394,15 @@ def update_qdrant_indexes():
try:
click.echo('Update dataset qdrant index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model

)
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
continue
embeddings = CacheEmbedding(embedding_model)

from core.index.vector_index.qdrant_vector_index import QdrantConfig, QdrantVectorIndex
@@ -524,23 +497,17 @@ def deal_dataset_vector(flask_app: Flask, dataset: Dataset, normalization_count:
try:
click.echo('restore dataset index: {}'.format(dataset.id))
try:
embedding_model = ModelFactory.get_embedding_model(
model_manager = ModelManager()

embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model

)
except Exception:
provider = Provider(
id='provider_id',
tenant_id=dataset.tenant_id,
provider_name='openai',
provider_type=ProviderType.CUSTOM.value,
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
is_valid=True,
)
model_provider = OpenAIProvider(provider=provider)
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
model_provider=model_provider)
pass
embeddings = CacheEmbedding(embedding_model)
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.provider_name == embedding_model.model_provider.provider_name,

Laden…
Abbrechen
Speichern