Bläddra i källkod

add qa thread control (#677)

tags/0.3.12
Jyong 2 år sedan
förälder
incheckning
174ebb51db
Inget konto är kopplat till bidragsgivarens mejladress
1 ändrade filer med 35 tillägg och 36 borttagningar
  1. 35
    36
      api/core/indexing_runner.py

+ 35
- 36
api/core/indexing_runner.py Visa fil

Split the text documents into nodes. Split the text documents into nodes.
""" """
all_documents = [] all_documents = []
all_qa_documents = []
for text_doc in text_docs: for text_doc in text_docs:
# document clean # document clean
document_text = self._document_clean(text_doc.page_content, processing_rule) document_text = self._document_clean(text_doc.page_content, processing_rule)
# parse document to nodes # parse document to nodes
documents = splitter.split_documents([text_doc]) documents = splitter.split_documents([text_doc])
split_documents = [] split_documents = []
for document_node in documents:
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document_node.page_content)
document_node.metadata['doc_id'] = doc_id
document_node.metadata['doc_hash'] = hash

split_documents.append(document_node)
all_documents.extend(split_documents)
# processing qa document
if document_form == 'qa_model':
llm: StreamableOpenAI = LLMBuilder.to_llm( llm: StreamableOpenAI = LLMBuilder.to_llm(
tenant_id=tenant_id, tenant_id=tenant_id,
model_name='gpt-3.5-turbo', model_name='gpt-3.5-turbo',
max_tokens=2000 max_tokens=2000
) )
for i in range(0, len(documents), 10):
for i in range(0, len(all_documents), 10):
threads = [] threads = []
sub_documents = documents[i:i + 10]
sub_documents = all_documents[i:i + 10]
for doc in sub_documents: for doc in sub_documents:
document_format_thread = threading.Thread(target=self.format_document, kwargs={
'llm': llm, 'document_node': doc, 'split_documents': split_documents,
'document_form': document_form})
document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
'llm': llm, 'document_node': doc, 'all_qa_documents': all_qa_documents})
threads.append(document_format_thread) threads.append(document_format_thread)
document_format_thread.start() document_format_thread.start()
for thread in threads: for thread in threads:
thread.join() thread.join()

all_documents.extend(split_documents)

return all_qa_documents
return all_documents return all_documents


def format_document(self, llm: StreamableOpenAI, document_node, split_documents, document_form: str):
def format_qa_document(self, llm: StreamableOpenAI, document_node, all_qa_documents):
format_documents = [] format_documents = []
if document_node.page_content is None or not document_node.page_content.strip(): if document_node.page_content is None or not document_node.page_content.strip():
return format_documents
if document_form == 'text_model':
# text model document
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document_node.page_content)

document_node.metadata['doc_id'] = doc_id
document_node.metadata['doc_hash'] = hash
return
try:
# qa model document
response = LLMGenerator.generate_qa_document_sync(llm, document_node.page_content)
document_qa_list = self.format_split_text(response)
qa_documents = []
for result in document_qa_list:
qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(result['question'])
qa_document.metadata['answer'] = result['answer']
qa_document.metadata['doc_id'] = doc_id
qa_document.metadata['doc_hash'] = hash
qa_documents.append(qa_document)
format_documents.extend(qa_documents)
except Exception as e:
logging.error(str(e))


format_documents.append(document_node)
elif document_form == 'qa_model':
try:
# qa model document
response = LLMGenerator.generate_qa_document_sync(llm, document_node.page_content)
document_qa_list = self.format_split_text(response)
qa_documents = []
for result in document_qa_list:
qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(result['question'])
qa_document.metadata['answer'] = result['answer']
qa_document.metadata['doc_id'] = doc_id
qa_document.metadata['doc_hash'] = hash
qa_documents.append(qa_document)
format_documents.extend(qa_documents)
except Exception as e:
logging.error(str(e))
split_documents.extend(format_documents)
all_qa_documents.extend(format_documents)




def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter, def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,

Laddar…
Avbryt
Spara