Przeglądaj źródła

[Fix] revert sagemaker llm to support model hub (#12378)

tags/0.15.0
Warren Chen 10 miesięcy temu
rodzic
commit
147d578922
No account linked to committer's email address

+ 52
- 108
api/core/model_runtime/model_providers/sagemaker/llm/llm.py Wyświetl plik

import json import json
import logging import logging
import re
from collections.abc import Generator, Iterator from collections.abc import Generator, Iterator
from typing import Any, Optional, Union, cast from typing import Any, Optional, Union, cast


""" """
handle stream chat generate response handle stream chat generate response
""" """

class ChunkProcessor:
def __init__(self):
self.buffer = bytearray()

def try_decode_chunk(self, chunk: bytes) -> list[dict]:
"""尝试从chunk中解码出完整的JSON对象"""
self.buffer.extend(chunk)
results = []

while True:
try:
start = self.buffer.find(b"{")
if start == -1:
self.buffer.clear()
break

bracket_count = 0
end = start

for i in range(start, len(self.buffer)):
if self.buffer[i] == ord("{"):
bracket_count += 1
elif self.buffer[i] == ord("}"):
bracket_count -= 1
if bracket_count == 0:
end = i + 1
break

if bracket_count != 0:
# JSON不完整,等待更多数据
if start > 0:
self.buffer = self.buffer[start:]
break

json_bytes = self.buffer[start:end]
try:
data = json.loads(json_bytes)
results.append(data)
self.buffer = self.buffer[end:]
except json.JSONDecodeError:
self.buffer = self.buffer[start + 1 :]

except Exception as e:
logger.debug(f"Warning: Error processing chunk ({str(e)})")
if start > 0:
self.buffer = self.buffer[start:]
break

return results

full_response = "" full_response = ""
processor = ChunkProcessor()

try:
for chunk in resp:
json_objects = processor.try_decode_chunk(chunk)

for data in json_objects:
if data.get("choices"):
choice = data["choices"][0]

if "delta" in choice and "content" in choice["delta"]:
chunk_content = choice["delta"]["content"]
assistant_prompt_message = AssistantPromptMessage(content=chunk_content, tool_calls=[])

if choice.get("finish_reason") is not None:
temp_assistant_prompt_message = AssistantPromptMessage(
content=full_response, tool_calls=[]
)

prompt_tokens = self._num_tokens_from_messages(messages=prompt_messages, tools=tools)
completion_tokens = self._num_tokens_from_messages(
messages=[temp_assistant_prompt_message], tools=[]
)

usage = self._calc_response_usage(
model=model,
credentials=credentials,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
)

yield LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
system_fingerprint=None,
delta=LLMResultChunkDelta(
index=0,
message=assistant_prompt_message,
finish_reason=choice["finish_reason"],
usage=usage,
),
)
else:
yield LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
system_fingerprint=None,
delta=LLMResultChunkDelta(index=0, message=assistant_prompt_message),
)

full_response += chunk_content

except Exception as e:
raise

if not full_response:
logger.warning("No content received from stream response")
buffer = ""
for chunk_bytes in resp:
buffer += chunk_bytes.decode("utf-8")
last_idx = 0
for match in re.finditer(r"^data:\s*(.+?)(\n\n)", buffer):
try:
data = json.loads(match.group(1).strip())
last_idx = match.span()[1]

if "content" in data["choices"][0]["delta"]:
chunk_content = data["choices"][0]["delta"]["content"]
assistant_prompt_message = AssistantPromptMessage(content=chunk_content, tool_calls=[])

if data["choices"][0]["finish_reason"] is not None:
temp_assistant_prompt_message = AssistantPromptMessage(content=full_response, tool_calls=[])
prompt_tokens = self._num_tokens_from_messages(messages=prompt_messages, tools=tools)
completion_tokens = self._num_tokens_from_messages(
messages=[temp_assistant_prompt_message], tools=[]
)
usage = self._calc_response_usage(
model=model,
credentials=credentials,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
)

yield LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
system_fingerprint=None,
delta=LLMResultChunkDelta(
index=0,
message=assistant_prompt_message,
finish_reason=data["choices"][0]["finish_reason"],
usage=usage,
),
)
else:
yield LLMResultChunk(
model=model,
prompt_messages=prompt_messages,
system_fingerprint=None,
delta=LLMResultChunkDelta(index=0, message=assistant_prompt_message),
)

full_response += chunk_content
except (json.JSONDecodeError, KeyError, IndexError) as e:
logger.info("json parse exception, content: {}".format(match.group(1).strip()))
pass

buffer = buffer[last_idx:]


def _invoke( def _invoke(
self, self,

Ładowanie…
Anuluj
Zapisz