|
|
|
@@ -0,0 +1,64 @@ |
|
|
|
model: grok-vision-beta |
|
|
|
label: |
|
|
|
en_US: Grok Vision Beta |
|
|
|
model_type: llm |
|
|
|
features: |
|
|
|
- agent-thought |
|
|
|
- vision |
|
|
|
model_properties: |
|
|
|
mode: chat |
|
|
|
context_size: 8192 |
|
|
|
parameter_rules: |
|
|
|
- name: temperature |
|
|
|
label: |
|
|
|
en_US: "Temperature" |
|
|
|
zh_Hans: "采样温度" |
|
|
|
type: float |
|
|
|
default: 0.7 |
|
|
|
min: 0.0 |
|
|
|
max: 2.0 |
|
|
|
precision: 1 |
|
|
|
required: true |
|
|
|
help: |
|
|
|
en_US: "The randomness of the sampling temperature control output. The temperature value is within the range of [0.0, 1.0]. The higher the value, the more random and creative the output; the lower the value, the more stable it is. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time." |
|
|
|
zh_Hans: "采样温度控制输出的随机性。温度值在 [0.0, 1.0] 范围内,值越高,输出越随机和创造性;值越低,输出越稳定。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。" |
|
|
|
|
|
|
|
- name: top_p |
|
|
|
label: |
|
|
|
en_US: "Top P" |
|
|
|
zh_Hans: "Top P" |
|
|
|
type: float |
|
|
|
default: 0.7 |
|
|
|
min: 0.0 |
|
|
|
max: 1.0 |
|
|
|
precision: 1 |
|
|
|
required: true |
|
|
|
help: |
|
|
|
en_US: "The value range of the sampling method is [0.0, 1.0]. The top_p value determines that the model selects tokens from the top p% of candidate words with the highest probability; when top_p is 0, this parameter is invalid. It is recommended to adjust either top_p or temperature parameters according to your needs to avoid adjusting both at the same time." |
|
|
|
zh_Hans: "采样方法的取值范围为 [0.0,1.0]。top_p 值确定模型从概率最高的前p%的候选词中选取 tokens;当 top_p 为 0 时,此参数无效。建议根据需求调整 top_p 或 temperature 参数,避免同时调整两者。" |
|
|
|
|
|
|
|
- name: frequency_penalty |
|
|
|
use_template: frequency_penalty |
|
|
|
label: |
|
|
|
en_US: "Frequency Penalty" |
|
|
|
zh_Hans: "频率惩罚" |
|
|
|
type: float |
|
|
|
default: 0 |
|
|
|
min: 0 |
|
|
|
max: 2.0 |
|
|
|
precision: 1 |
|
|
|
required: false |
|
|
|
help: |
|
|
|
en_US: "Number between 0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim." |
|
|
|
zh_Hans: "介于0和2.0之间的数字。正值会根据新标记在文本中迄今为止的现有频率来惩罚它们,从而降低模型一字不差地重复同一句话的可能性。" |
|
|
|
|
|
|
|
- name: user |
|
|
|
use_template: text |
|
|
|
label: |
|
|
|
en_US: "User" |
|
|
|
zh_Hans: "用户" |
|
|
|
type: string |
|
|
|
required: false |
|
|
|
help: |
|
|
|
en_US: "Used to track and differentiate conversation requests from different users." |
|
|
|
zh_Hans: "用于追踪和区分不同用户的对话请求。" |