浏览代码

fix: add context_size and max_chunks to Tongyi embedding to resolve issue #7189 (#7227)

tags/0.7.0
Onelevenvy 1年前
父节点
当前提交
0f59d76997
没有帐户链接到提交者的电子邮件

+ 5
- 0
api/core/model_runtime/model_providers/tongyi/text_embedding/text-embedding-v1.yaml 查看文件

@@ -2,3 +2,8 @@ model: text-embedding-v1
model_type: text-embedding
model_properties:
context_size: 2048
max_chunks: 25
pricing:
input: "0.0007"
unit: "0.001"
currency: RMB

+ 5
- 0
api/core/model_runtime/model_providers/tongyi/text_embedding/text-embedding-v2.yaml 查看文件

@@ -2,3 +2,8 @@ model: text-embedding-v2
model_type: text-embedding
model_properties:
context_size: 2048
max_chunks: 25
pricing:
input: "0.0007"
unit: "0.001"
currency: RMB

+ 52
- 19
api/core/model_runtime/model_providers/tongyi/text_embedding/text_embedding.py 查看文件

@@ -2,6 +2,7 @@ import time
from typing import Optional

import dashscope
import numpy as np

from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import (
@@ -21,11 +22,11 @@ class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel):
"""

def _invoke(
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@@ -37,16 +38,44 @@ class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel):
:return: embeddings result
"""
credentials_kwargs = self._to_credential_kwargs(credentials)
embeddings, embedding_used_tokens = self.embed_documents(
credentials_kwargs=credentials_kwargs,
model=model,
texts=texts
)

context_size = self._get_context_size(model, credentials)
max_chunks = self._get_max_chunks(model, credentials)
inputs = []
indices = []
used_tokens = 0

for i, text in enumerate(texts):

# Here token count is only an approximation based on the GPT2 tokenizer
num_tokens = self._get_num_tokens_by_gpt2(text)

if num_tokens >= context_size:
cutoff = int(np.floor(len(text) * (context_size / num_tokens)))
# if num tokens is larger than context length, only use the start
inputs.append(text[0:cutoff])
else:
inputs.append(text)
indices += [i]

batched_embeddings = []
_iter = range(0, len(inputs), max_chunks)

for i in _iter:
embeddings_batch, embedding_used_tokens = self.embed_documents(
credentials_kwargs=credentials_kwargs,
model=model,
texts=inputs[i : i + max_chunks],
)
used_tokens += embedding_used_tokens
batched_embeddings += embeddings_batch

# calc usage
usage = self._calc_response_usage(
model=model, credentials=credentials, tokens=used_tokens
)
return TextEmbeddingResult(
embeddings=embeddings,
usage=self._calc_response_usage(model, credentials_kwargs, embedding_used_tokens),
model=model
embeddings=batched_embeddings, usage=usage, model=model
)

def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
@@ -79,12 +108,16 @@ class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel):
credentials_kwargs = self._to_credential_kwargs(credentials)

# call embedding model
self.embed_documents(credentials_kwargs=credentials_kwargs, model=model, texts=["ping"])
self.embed_documents(
credentials_kwargs=credentials_kwargs, model=model, texts=["ping"]
)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))

@staticmethod
def embed_documents(credentials_kwargs: dict, model: str, texts: list[str]) -> tuple[list[list[float]], int]:
def embed_documents(
credentials_kwargs: dict, model: str, texts: list[str]
) -> tuple[list[list[float]], int]:
"""Call out to Tongyi's embedding endpoint.

Args:
@@ -102,7 +135,7 @@ class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel):
api_key=credentials_kwargs["dashscope_api_key"],
model=model,
input=text,
text_type="document"
text_type="document",
)
data = response.output["embeddings"][0]
embeddings.append(data["embedding"])
@@ -111,7 +144,7 @@ class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel):
return [list(map(float, e)) for e in embeddings], embedding_used_tokens

def _calc_response_usage(
self, model: str, credentials: dict, tokens: int
self, model: str, credentials: dict, tokens: int
) -> EmbeddingUsage:
"""
Calculate response usage
@@ -125,7 +158,7 @@ class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel):
model=model,
credentials=credentials,
price_type=PriceType.INPUT,
tokens=tokens
tokens=tokens,
)

# transform usage
@@ -136,7 +169,7 @@ class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel):
price_unit=input_price_info.unit,
total_price=input_price_info.total_amount,
currency=input_price_info.currency,
latency=time.perf_counter() - self.started_at
latency=time.perf_counter() - self.started_at,
)

return usage

正在加载...
取消
保存