Procházet zdrojové kódy

fix wrong using of RetrievalMethod Enum (#6345)

tags/0.6.15
Jyong před 1 rokem
rodič
revize
0de224b153
Žádný účet není propojen s e-mailovou adresou tvůrce revize

+ 8
- 8
api/controllers/console/datasets/datasets.py Zobrazit soubor

case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT | VectorType.ORACLE: case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT | VectorType.ORACLE:
return { return {
'retrieval_method': [ 'retrieval_method': [
RetrievalMethod.SEMANTIC_SEARCH
RetrievalMethod.SEMANTIC_SEARCH.value
] ]
} }
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH | VectorType.ANALYTICDB | VectorType.MYSCALE: case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH | VectorType.ANALYTICDB | VectorType.MYSCALE:
return { return {
'retrieval_method': [ 'retrieval_method': [
RetrievalMethod.SEMANTIC_SEARCH,
RetrievalMethod.FULL_TEXT_SEARCH,
RetrievalMethod.HYBRID_SEARCH,
RetrievalMethod.SEMANTIC_SEARCH.value,
RetrievalMethod.FULL_TEXT_SEARCH.value,
RetrievalMethod.HYBRID_SEARCH.value,
] ]
} }
case _: case _:
case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT | VectorType.ORACLE: case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT | VectorType.ORACLE:
return { return {
'retrieval_method': [ 'retrieval_method': [
RetrievalMethod.SEMANTIC_SEARCH
RetrievalMethod.SEMANTIC_SEARCH.value
] ]
} }
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH| VectorType.ANALYTICDB | VectorType.MYSCALE: case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH| VectorType.ANALYTICDB | VectorType.MYSCALE:
return { return {
'retrieval_method': [ 'retrieval_method': [
RetrievalMethod.SEMANTIC_SEARCH,
RetrievalMethod.FULL_TEXT_SEARCH,
RetrievalMethod.HYBRID_SEARCH,
RetrievalMethod.SEMANTIC_SEARCH.value,
RetrievalMethod.FULL_TEXT_SEARCH.value,
RetrievalMethod.HYBRID_SEARCH.value,
] ]
} }
case _: case _:

+ 4
- 4
api/core/rag/datasource/retrieval_service.py Zobrazit soubor

from models.dataset import Dataset from models.dataset import Dataset


default_retrieval_model = { default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False, 'reranking_enable': False,
'reranking_model': { 'reranking_model': {
'reranking_provider_name': '', 'reranking_provider_name': '',
exception_message = ';\n'.join(exceptions) exception_message = ';\n'.join(exceptions)
raise Exception(exception_message) raise Exception(exception_message)


if retrival_method == RetrievalMethod.HYBRID_SEARCH:
if retrival_method == RetrievalMethod.HYBRID_SEARCH.value:
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False) data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
all_documents = data_post_processor.invoke( all_documents = data_post_processor.invoke(
query=query, query=query,
) )


if documents: if documents:
if reranking_model and retrival_method == RetrievalMethod.SEMANTIC_SEARCH:
if reranking_model and retrival_method == RetrievalMethod.SEMANTIC_SEARCH.value:
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False) data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
all_documents.extend(data_post_processor.invoke( all_documents.extend(data_post_processor.invoke(
query=query, query=query,
top_k=top_k top_k=top_k
) )
if documents: if documents:
if reranking_model and retrival_method == RetrievalMethod.FULL_TEXT_SEARCH:
if reranking_model and retrival_method == RetrievalMethod.FULL_TEXT_SEARCH.value:
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False) data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
all_documents.extend(data_post_processor.invoke( all_documents.extend(data_post_processor.invoke(
query=query, query=query,

+ 2
- 2
api/core/rag/retrieval/dataset_retrieval.py Zobrazit soubor

from models.dataset import Document as DatasetDocument from models.dataset import Document as DatasetDocument


default_retrieval_model = { default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False, 'reranking_enable': False,
'reranking_model': { 'reranking_model': {
'reranking_provider_name': '', 'reranking_provider_name': '',
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE: if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
# get retrieval model config # get retrieval model config
default_retrieval_model = { default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False, 'reranking_enable': False,
'reranking_model': { 'reranking_model': {
'reranking_provider_name': '', 'reranking_provider_name': '',

+ 3
- 3
api/core/rag/retrieval/retrival_methods.py Zobrazit soubor

from enum import Enum from enum import Enum




class RetrievalMethod(str, Enum):
class RetrievalMethod(Enum):
SEMANTIC_SEARCH = 'semantic_search' SEMANTIC_SEARCH = 'semantic_search'
FULL_TEXT_SEARCH = 'full_text_search' FULL_TEXT_SEARCH = 'full_text_search'
HYBRID_SEARCH = 'hybrid_search' HYBRID_SEARCH = 'hybrid_search'


@staticmethod @staticmethod
def is_support_semantic_search(retrieval_method: str) -> bool: def is_support_semantic_search(retrieval_method: str) -> bool:
return retrieval_method in {RetrievalMethod.SEMANTIC_SEARCH, RetrievalMethod.HYBRID_SEARCH}
return retrieval_method in {RetrievalMethod.SEMANTIC_SEARCH.value, RetrievalMethod.HYBRID_SEARCH.value}


@staticmethod @staticmethod
def is_support_fulltext_search(retrieval_method: str) -> bool: def is_support_fulltext_search(retrieval_method: str) -> bool:
return retrieval_method in {RetrievalMethod.FULL_TEXT_SEARCH, RetrievalMethod.HYBRID_SEARCH}
return retrieval_method in {RetrievalMethod.FULL_TEXT_SEARCH.value, RetrievalMethod.HYBRID_SEARCH.value}

+ 1
- 1
api/core/tools/tool/dataset_retriever/dataset_multi_retriever_tool.py Zobrazit soubor

from models.dataset import Dataset, Document, DocumentSegment from models.dataset import Dataset, Document, DocumentSegment


default_retrieval_model = { default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False, 'reranking_enable': False,
'reranking_model': { 'reranking_model': {
'reranking_provider_name': '', 'reranking_provider_name': '',

+ 1
- 1
api/core/tools/tool/dataset_retriever/dataset_retriever_tool.py Zobrazit soubor

from models.dataset import Dataset, Document, DocumentSegment from models.dataset import Dataset, Document, DocumentSegment


default_retrieval_model = { default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False, 'reranking_enable': False,
'reranking_model': { 'reranking_model': {
'reranking_provider_name': '', 'reranking_provider_name': '',

+ 1
- 1
api/core/workflow/nodes/knowledge_retrieval/knowledge_retrieval_node.py Zobrazit soubor

from models.workflow import WorkflowNodeExecutionStatus from models.workflow import WorkflowNodeExecutionStatus


default_retrieval_model = { default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False, 'reranking_enable': False,
'reranking_model': { 'reranking_model': {
'reranking_provider_name': '', 'reranking_provider_name': '',

+ 1
- 1
api/models/dataset.py Zobrazit soubor

@property @property
def retrieval_model_dict(self): def retrieval_model_dict(self):
default_retrieval_model = { default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False, 'reranking_enable': False,
'reranking_model': { 'reranking_model': {
'reranking_provider_name': '', 'reranking_provider_name': '',

+ 2
- 2
api/services/dataset_service.py Zobrazit soubor

dataset.collection_binding_id = dataset_collection_binding.id dataset.collection_binding_id = dataset_collection_binding.id
if not dataset.retrieval_model: if not dataset.retrieval_model:
default_retrieval_model = { default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False, 'reranking_enable': False,
'reranking_model': { 'reranking_model': {
'reranking_provider_name': '', 'reranking_provider_name': '',
retrieval_model = document_data['retrieval_model'] retrieval_model = document_data['retrieval_model']
else: else:
default_retrieval_model = { default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False, 'reranking_enable': False,
'reranking_model': { 'reranking_model': {
'reranking_provider_name': '', 'reranking_provider_name': '',

+ 1
- 1
api/services/hit_testing_service.py Zobrazit soubor

from models.dataset import Dataset, DatasetQuery, DocumentSegment from models.dataset import Dataset, DatasetQuery, DocumentSegment


default_retrieval_model = { default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
'reranking_enable': False, 'reranking_enable': False,
'reranking_model': { 'reranking_model': {
'reranking_provider_name': '', 'reranking_provider_name': '',

Načítá se…
Zrušit
Uložit