|
|
|
@@ -0,0 +1,498 @@ |
|
|
|
import copy |
|
|
|
import json |
|
|
|
import logging |
|
|
|
from collections.abc import Iterable |
|
|
|
from typing import Any, Optional |
|
|
|
|
|
|
|
from opensearchpy import OpenSearch |
|
|
|
from opensearchpy.helpers import bulk |
|
|
|
from pydantic import BaseModel, model_validator |
|
|
|
from tenacity import retry, stop_after_attempt, wait_fixed |
|
|
|
|
|
|
|
from configs import dify_config |
|
|
|
from core.rag.datasource.vdb.field import Field |
|
|
|
from core.rag.datasource.vdb.vector_base import BaseVector |
|
|
|
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory |
|
|
|
from core.rag.datasource.vdb.vector_type import VectorType |
|
|
|
from core.rag.embedding.embedding_base import Embeddings |
|
|
|
from core.rag.models.document import Document |
|
|
|
from extensions.ext_redis import redis_client |
|
|
|
from models.dataset import Dataset |
|
|
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
|
|
logging.getLogger("lindorm").setLevel(logging.WARN) |
|
|
|
|
|
|
|
|
|
|
|
class LindormVectorStoreConfig(BaseModel): |
|
|
|
hosts: str |
|
|
|
username: Optional[str] = None |
|
|
|
password: Optional[str] = None |
|
|
|
|
|
|
|
@model_validator(mode="before") |
|
|
|
@classmethod |
|
|
|
def validate_config(cls, values: dict) -> dict: |
|
|
|
if not values["hosts"]: |
|
|
|
raise ValueError("config URL is required") |
|
|
|
if not values["username"]: |
|
|
|
raise ValueError("config USERNAME is required") |
|
|
|
if not values["password"]: |
|
|
|
raise ValueError("config PASSWORD is required") |
|
|
|
return values |
|
|
|
|
|
|
|
def to_opensearch_params(self) -> dict[str, Any]: |
|
|
|
params = { |
|
|
|
"hosts": self.hosts, |
|
|
|
} |
|
|
|
if self.username and self.password: |
|
|
|
params["http_auth"] = (self.username, self.password) |
|
|
|
return params |
|
|
|
|
|
|
|
|
|
|
|
class LindormVectorStore(BaseVector): |
|
|
|
def __init__(self, collection_name: str, config: LindormVectorStoreConfig, **kwargs): |
|
|
|
super().__init__(collection_name.lower()) |
|
|
|
self._client_config = config |
|
|
|
self._client = OpenSearch(**config.to_opensearch_params()) |
|
|
|
self.kwargs = kwargs |
|
|
|
|
|
|
|
def get_type(self) -> str: |
|
|
|
return VectorType.LINDORM |
|
|
|
|
|
|
|
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs): |
|
|
|
self.create_collection(len(embeddings[0]), **kwargs) |
|
|
|
self.add_texts(texts, embeddings) |
|
|
|
|
|
|
|
def refresh(self): |
|
|
|
self._client.indices.refresh(index=self._collection_name) |
|
|
|
|
|
|
|
def __filter_existed_ids( |
|
|
|
self, |
|
|
|
texts: list[str], |
|
|
|
metadatas: list[dict], |
|
|
|
ids: list[str], |
|
|
|
bulk_size: int = 1024, |
|
|
|
) -> tuple[Iterable[str], Optional[list[dict]], Optional[list[str]]]: |
|
|
|
@retry(stop=stop_after_attempt(3), wait=wait_fixed(60)) |
|
|
|
def __fetch_existing_ids(batch_ids: list[str]) -> set[str]: |
|
|
|
try: |
|
|
|
existing_docs = self._client.mget(index=self._collection_name, body={"ids": batch_ids}, _source=False) |
|
|
|
return {doc["_id"] for doc in existing_docs["docs"] if doc["found"]} |
|
|
|
except Exception as e: |
|
|
|
logger.error(f"Error fetching batch {batch_ids}: {e}") |
|
|
|
return set() |
|
|
|
|
|
|
|
@retry(stop=stop_after_attempt(3), wait=wait_fixed(60)) |
|
|
|
def __fetch_existing_routing_ids(batch_ids: list[str], route_ids: list[str]) -> set[str]: |
|
|
|
try: |
|
|
|
existing_docs = self._client.mget( |
|
|
|
body={ |
|
|
|
"docs": [ |
|
|
|
{"_index": self._collection_name, "_id": id, "routing": routing} |
|
|
|
for id, routing in zip(batch_ids, route_ids) |
|
|
|
] |
|
|
|
}, |
|
|
|
_source=False, |
|
|
|
) |
|
|
|
return {doc["_id"] for doc in existing_docs["docs"] if doc["found"]} |
|
|
|
except Exception as e: |
|
|
|
logger.error(f"Error fetching batch {batch_ids}: {e}") |
|
|
|
return set() |
|
|
|
|
|
|
|
if ids is None: |
|
|
|
return texts, metadatas, ids |
|
|
|
|
|
|
|
if len(texts) != len(ids): |
|
|
|
raise RuntimeError(f"texts {len(texts)} != {ids}") |
|
|
|
|
|
|
|
filtered_texts = [] |
|
|
|
filtered_metadatas = [] |
|
|
|
filtered_ids = [] |
|
|
|
|
|
|
|
def batch(iterable, n): |
|
|
|
length = len(iterable) |
|
|
|
for idx in range(0, length, n): |
|
|
|
yield iterable[idx : min(idx + n, length)] |
|
|
|
|
|
|
|
for ids_batch, texts_batch, metadatas_batch in zip( |
|
|
|
batch(ids, bulk_size), |
|
|
|
batch(texts, bulk_size), |
|
|
|
batch(metadatas, bulk_size) if metadatas is not None else batch([None] * len(ids), bulk_size), |
|
|
|
): |
|
|
|
existing_ids_set = __fetch_existing_ids(ids_batch) |
|
|
|
for text, metadata, doc_id in zip(texts_batch, metadatas_batch, ids_batch): |
|
|
|
if doc_id not in existing_ids_set: |
|
|
|
filtered_texts.append(text) |
|
|
|
filtered_ids.append(doc_id) |
|
|
|
if metadatas is not None: |
|
|
|
filtered_metadatas.append(metadata) |
|
|
|
|
|
|
|
return filtered_texts, metadatas if metadatas is None else filtered_metadatas, filtered_ids |
|
|
|
|
|
|
|
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs): |
|
|
|
actions = [] |
|
|
|
uuids = self._get_uuids(documents) |
|
|
|
for i in range(len(documents)): |
|
|
|
action = { |
|
|
|
"_op_type": "index", |
|
|
|
"_index": self._collection_name.lower(), |
|
|
|
"_id": uuids[i], |
|
|
|
"_source": { |
|
|
|
Field.CONTENT_KEY.value: documents[i].page_content, |
|
|
|
Field.VECTOR.value: embeddings[i], # Make sure you pass an array here |
|
|
|
Field.METADATA_KEY.value: documents[i].metadata, |
|
|
|
}, |
|
|
|
} |
|
|
|
actions.append(action) |
|
|
|
bulk(self._client, actions) |
|
|
|
self.refresh() |
|
|
|
|
|
|
|
def get_ids_by_metadata_field(self, key: str, value: str): |
|
|
|
query = {"query": {"term": {f"{Field.METADATA_KEY.value}.{key}.keyword": value}}} |
|
|
|
response = self._client.search(index=self._collection_name, body=query) |
|
|
|
if response["hits"]["hits"]: |
|
|
|
return [hit["_id"] for hit in response["hits"]["hits"]] |
|
|
|
else: |
|
|
|
return None |
|
|
|
|
|
|
|
def delete_by_metadata_field(self, key: str, value: str): |
|
|
|
query_str = {"query": {"match": {f"metadata.{key}": f"{value}"}}} |
|
|
|
results = self._client.search(index=self._collection_name, body=query_str) |
|
|
|
ids = [hit["_id"] for hit in results["hits"]["hits"]] |
|
|
|
if ids: |
|
|
|
self.delete_by_ids(ids) |
|
|
|
|
|
|
|
def delete_by_ids(self, ids: list[str]) -> None: |
|
|
|
for id in ids: |
|
|
|
if self._client.exists(index=self._collection_name, id=id): |
|
|
|
self._client.delete(index=self._collection_name, id=id) |
|
|
|
else: |
|
|
|
logger.warning(f"DELETE BY ID: ID {id} does not exist in the index.") |
|
|
|
|
|
|
|
def delete(self) -> None: |
|
|
|
try: |
|
|
|
if self._client.indices.exists(index=self._collection_name): |
|
|
|
self._client.indices.delete(index=self._collection_name, params={"timeout": 60}) |
|
|
|
logger.info("Delete index success") |
|
|
|
else: |
|
|
|
logger.warning(f"Index '{self._collection_name}' does not exist. No deletion performed.") |
|
|
|
except Exception as e: |
|
|
|
logger.error(f"Error occurred while deleting the index: {e}") |
|
|
|
raise e |
|
|
|
|
|
|
|
def text_exists(self, id: str) -> bool: |
|
|
|
try: |
|
|
|
self._client.get(index=self._collection_name, id=id) |
|
|
|
return True |
|
|
|
except: |
|
|
|
return False |
|
|
|
|
|
|
|
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]: |
|
|
|
# Make sure query_vector is a list |
|
|
|
if not isinstance(query_vector, list): |
|
|
|
raise ValueError("query_vector should be a list of floats") |
|
|
|
|
|
|
|
# Check whether query_vector is a floating-point number list |
|
|
|
if not all(isinstance(x, float) for x in query_vector): |
|
|
|
raise ValueError("All elements in query_vector should be floats") |
|
|
|
|
|
|
|
top_k = kwargs.get("top_k", 10) |
|
|
|
query = default_vector_search_query(query_vector=query_vector, k=top_k, **kwargs) |
|
|
|
try: |
|
|
|
response = self._client.search(index=self._collection_name, body=query) |
|
|
|
except Exception as e: |
|
|
|
logger.error(f"Error executing search: {e}") |
|
|
|
raise |
|
|
|
|
|
|
|
docs_and_scores = [] |
|
|
|
for hit in response["hits"]["hits"]: |
|
|
|
docs_and_scores.append( |
|
|
|
( |
|
|
|
Document( |
|
|
|
page_content=hit["_source"][Field.CONTENT_KEY.value], |
|
|
|
vector=hit["_source"][Field.VECTOR.value], |
|
|
|
metadata=hit["_source"][Field.METADATA_KEY.value], |
|
|
|
), |
|
|
|
hit["_score"], |
|
|
|
) |
|
|
|
) |
|
|
|
docs = [] |
|
|
|
for doc, score in docs_and_scores: |
|
|
|
score_threshold = kwargs.get("score_threshold", 0.0) or 0.0 |
|
|
|
if score > score_threshold: |
|
|
|
doc.metadata["score"] = score |
|
|
|
docs.append(doc) |
|
|
|
|
|
|
|
return docs |
|
|
|
|
|
|
|
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]: |
|
|
|
must = kwargs.get("must") |
|
|
|
must_not = kwargs.get("must_not") |
|
|
|
should = kwargs.get("should") |
|
|
|
minimum_should_match = kwargs.get("minimum_should_match", 0) |
|
|
|
top_k = kwargs.get("top_k", 10) |
|
|
|
filters = kwargs.get("filter") |
|
|
|
routing = kwargs.get("routing") |
|
|
|
full_text_query = default_text_search_query( |
|
|
|
query_text=query, |
|
|
|
k=top_k, |
|
|
|
text_field=Field.CONTENT_KEY.value, |
|
|
|
must=must, |
|
|
|
must_not=must_not, |
|
|
|
should=should, |
|
|
|
minimum_should_match=minimum_should_match, |
|
|
|
filters=filters, |
|
|
|
routing=routing, |
|
|
|
) |
|
|
|
response = self._client.search(index=self._collection_name, body=full_text_query) |
|
|
|
docs = [] |
|
|
|
for hit in response["hits"]["hits"]: |
|
|
|
docs.append( |
|
|
|
Document( |
|
|
|
page_content=hit["_source"][Field.CONTENT_KEY.value], |
|
|
|
vector=hit["_source"][Field.VECTOR.value], |
|
|
|
metadata=hit["_source"][Field.METADATA_KEY.value], |
|
|
|
) |
|
|
|
) |
|
|
|
|
|
|
|
return docs |
|
|
|
|
|
|
|
def create_collection(self, dimension: int, **kwargs): |
|
|
|
lock_name = f"vector_indexing_lock_{self._collection_name}" |
|
|
|
with redis_client.lock(lock_name, timeout=20): |
|
|
|
collection_exist_cache_key = f"vector_indexing_{self._collection_name}" |
|
|
|
if redis_client.get(collection_exist_cache_key): |
|
|
|
logger.info(f"Collection {self._collection_name} already exists.") |
|
|
|
return |
|
|
|
if self._client.indices.exists(index=self._collection_name): |
|
|
|
logger.info("{self._collection_name.lower()} already exists.") |
|
|
|
return |
|
|
|
if len(self.kwargs) == 0 and len(kwargs) != 0: |
|
|
|
self.kwargs = copy.deepcopy(kwargs) |
|
|
|
vector_field = kwargs.pop("vector_field", Field.VECTOR.value) |
|
|
|
shards = kwargs.pop("shards", 2) |
|
|
|
|
|
|
|
engine = kwargs.pop("engine", "lvector") |
|
|
|
method_name = kwargs.pop("method_name", "hnsw") |
|
|
|
data_type = kwargs.pop("data_type", "float") |
|
|
|
space_type = kwargs.pop("space_type", "cosinesimil") |
|
|
|
|
|
|
|
hnsw_m = kwargs.pop("hnsw_m", 24) |
|
|
|
hnsw_ef_construction = kwargs.pop("hnsw_ef_construction", 500) |
|
|
|
ivfpq_m = kwargs.pop("ivfpq_m", dimension) |
|
|
|
nlist = kwargs.pop("nlist", 1000) |
|
|
|
centroids_use_hnsw = kwargs.pop("centroids_use_hnsw", True if nlist >= 5000 else False) |
|
|
|
centroids_hnsw_m = kwargs.pop("centroids_hnsw_m", 24) |
|
|
|
centroids_hnsw_ef_construct = kwargs.pop("centroids_hnsw_ef_construct", 500) |
|
|
|
centroids_hnsw_ef_search = kwargs.pop("centroids_hnsw_ef_search", 100) |
|
|
|
mapping = default_text_mapping( |
|
|
|
dimension, |
|
|
|
method_name, |
|
|
|
shards=shards, |
|
|
|
engine=engine, |
|
|
|
data_type=data_type, |
|
|
|
space_type=space_type, |
|
|
|
vector_field=vector_field, |
|
|
|
hnsw_m=hnsw_m, |
|
|
|
hnsw_ef_construction=hnsw_ef_construction, |
|
|
|
nlist=nlist, |
|
|
|
ivfpq_m=ivfpq_m, |
|
|
|
centroids_use_hnsw=centroids_use_hnsw, |
|
|
|
centroids_hnsw_m=centroids_hnsw_m, |
|
|
|
centroids_hnsw_ef_construct=centroids_hnsw_ef_construct, |
|
|
|
centroids_hnsw_ef_search=centroids_hnsw_ef_search, |
|
|
|
**kwargs, |
|
|
|
) |
|
|
|
self._client.indices.create(index=self._collection_name.lower(), body=mapping) |
|
|
|
redis_client.set(collection_exist_cache_key, 1, ex=3600) |
|
|
|
# logger.info(f"create index success: {self._collection_name}") |
|
|
|
|
|
|
|
|
|
|
|
def default_text_mapping(dimension: int, method_name: str, **kwargs: Any) -> dict: |
|
|
|
routing_field = kwargs.get("routing_field") |
|
|
|
excludes_from_source = kwargs.get("excludes_from_source") |
|
|
|
analyzer = kwargs.get("analyzer", "ik_max_word") |
|
|
|
text_field = kwargs.get("text_field", Field.CONTENT_KEY.value) |
|
|
|
engine = kwargs["engine"] |
|
|
|
shard = kwargs["shards"] |
|
|
|
space_type = kwargs["space_type"] |
|
|
|
data_type = kwargs["data_type"] |
|
|
|
vector_field = kwargs.get("vector_field", Field.VECTOR.value) |
|
|
|
|
|
|
|
if method_name == "ivfpq": |
|
|
|
ivfpq_m = kwargs["ivfpq_m"] |
|
|
|
nlist = kwargs["nlist"] |
|
|
|
centroids_use_hnsw = True if nlist > 10000 else False |
|
|
|
centroids_hnsw_m = 24 |
|
|
|
centroids_hnsw_ef_construct = 500 |
|
|
|
centroids_hnsw_ef_search = 100 |
|
|
|
parameters = { |
|
|
|
"m": ivfpq_m, |
|
|
|
"nlist": nlist, |
|
|
|
"centroids_use_hnsw": centroids_use_hnsw, |
|
|
|
"centroids_hnsw_m": centroids_hnsw_m, |
|
|
|
"centroids_hnsw_ef_construct": centroids_hnsw_ef_construct, |
|
|
|
"centroids_hnsw_ef_search": centroids_hnsw_ef_search, |
|
|
|
} |
|
|
|
elif method_name == "hnsw": |
|
|
|
neighbor = kwargs["hnsw_m"] |
|
|
|
ef_construction = kwargs["hnsw_ef_construction"] |
|
|
|
parameters = {"m": neighbor, "ef_construction": ef_construction} |
|
|
|
elif method_name == "flat": |
|
|
|
parameters = {} |
|
|
|
else: |
|
|
|
raise RuntimeError(f"unexpected method_name: {method_name}") |
|
|
|
|
|
|
|
mapping = { |
|
|
|
"settings": {"index": {"number_of_shards": shard, "knn": True}}, |
|
|
|
"mappings": { |
|
|
|
"properties": { |
|
|
|
vector_field: { |
|
|
|
"type": "knn_vector", |
|
|
|
"dimension": dimension, |
|
|
|
"data_type": data_type, |
|
|
|
"method": { |
|
|
|
"engine": engine, |
|
|
|
"name": method_name, |
|
|
|
"space_type": space_type, |
|
|
|
"parameters": parameters, |
|
|
|
}, |
|
|
|
}, |
|
|
|
text_field: {"type": "text", "analyzer": analyzer}, |
|
|
|
} |
|
|
|
}, |
|
|
|
} |
|
|
|
|
|
|
|
if excludes_from_source: |
|
|
|
mapping["mappings"]["_source"] = {"excludes": excludes_from_source} # e.g. {"excludes": ["vector_field"]} |
|
|
|
|
|
|
|
if method_name == "ivfpq" and routing_field is not None: |
|
|
|
mapping["settings"]["index"]["knn_routing"] = True |
|
|
|
mapping["settings"]["index"]["knn.offline.construction"] = True |
|
|
|
|
|
|
|
if method_name == "flat" and routing_field is not None: |
|
|
|
mapping["settings"]["index"]["knn_routing"] = True |
|
|
|
|
|
|
|
return mapping |
|
|
|
|
|
|
|
|
|
|
|
def default_text_search_query( |
|
|
|
query_text: str, |
|
|
|
k: int = 4, |
|
|
|
text_field: str = Field.CONTENT_KEY.value, |
|
|
|
must: Optional[list[dict]] = None, |
|
|
|
must_not: Optional[list[dict]] = None, |
|
|
|
should: Optional[list[dict]] = None, |
|
|
|
minimum_should_match: int = 0, |
|
|
|
filters: Optional[list[dict]] = None, |
|
|
|
routing: Optional[str] = None, |
|
|
|
**kwargs, |
|
|
|
) -> dict: |
|
|
|
if routing is not None: |
|
|
|
routing_field = kwargs.get("routing_field", "routing_field") |
|
|
|
query_clause = { |
|
|
|
"bool": { |
|
|
|
"must": [{"match": {text_field: query_text}}, {"term": {f"metadata.{routing_field}.keyword": routing}}] |
|
|
|
} |
|
|
|
} |
|
|
|
else: |
|
|
|
query_clause = {"match": {text_field: query_text}} |
|
|
|
# build the simplest search_query when only query_text is specified |
|
|
|
if not must and not must_not and not should and not filters: |
|
|
|
search_query = {"size": k, "query": query_clause} |
|
|
|
return search_query |
|
|
|
|
|
|
|
# build complex search_query when either of must/must_not/should/filter is specified |
|
|
|
if must: |
|
|
|
if not isinstance(must, list): |
|
|
|
raise RuntimeError(f"unexpected [must] clause with {type(filters)}") |
|
|
|
if query_clause not in must: |
|
|
|
must.append(query_clause) |
|
|
|
else: |
|
|
|
must = [query_clause] |
|
|
|
|
|
|
|
boolean_query = {"must": must} |
|
|
|
|
|
|
|
if must_not: |
|
|
|
if not isinstance(must_not, list): |
|
|
|
raise RuntimeError(f"unexpected [must_not] clause with {type(filters)}") |
|
|
|
boolean_query["must_not"] = must_not |
|
|
|
|
|
|
|
if should: |
|
|
|
if not isinstance(should, list): |
|
|
|
raise RuntimeError(f"unexpected [should] clause with {type(filters)}") |
|
|
|
boolean_query["should"] = should |
|
|
|
if minimum_should_match != 0: |
|
|
|
boolean_query["minimum_should_match"] = minimum_should_match |
|
|
|
|
|
|
|
if filters: |
|
|
|
if not isinstance(filters, list): |
|
|
|
raise RuntimeError(f"unexpected [filter] clause with {type(filters)}") |
|
|
|
boolean_query["filter"] = filters |
|
|
|
|
|
|
|
search_query = {"size": k, "query": {"bool": boolean_query}} |
|
|
|
return search_query |
|
|
|
|
|
|
|
|
|
|
|
def default_vector_search_query( |
|
|
|
query_vector: list[float], |
|
|
|
k: int = 4, |
|
|
|
min_score: str = "0.0", |
|
|
|
ef_search: Optional[str] = None, # only for hnsw |
|
|
|
nprobe: Optional[str] = None, # "2000" |
|
|
|
reorder_factor: Optional[str] = None, # "20" |
|
|
|
client_refactor: Optional[str] = None, # "true" |
|
|
|
vector_field: str = Field.VECTOR.value, |
|
|
|
filters: Optional[list[dict]] = None, |
|
|
|
filter_type: Optional[str] = None, |
|
|
|
**kwargs, |
|
|
|
) -> dict: |
|
|
|
if filters is not None: |
|
|
|
filter_type = "post_filter" if filter_type is None else filter_type |
|
|
|
if not isinstance(filter, list): |
|
|
|
raise RuntimeError(f"unexpected filter with {type(filters)}") |
|
|
|
final_ext = {"lvector": {}} |
|
|
|
if min_score != "0.0": |
|
|
|
final_ext["lvector"]["min_score"] = min_score |
|
|
|
if ef_search: |
|
|
|
final_ext["lvector"]["ef_search"] = ef_search |
|
|
|
if nprobe: |
|
|
|
final_ext["lvector"]["nprobe"] = nprobe |
|
|
|
if reorder_factor: |
|
|
|
final_ext["lvector"]["reorder_factor"] = reorder_factor |
|
|
|
if client_refactor: |
|
|
|
final_ext["lvector"]["client_refactor"] = client_refactor |
|
|
|
|
|
|
|
search_query = { |
|
|
|
"size": k, |
|
|
|
"_source": True, # force return '_source' |
|
|
|
"query": {"knn": {vector_field: {"vector": query_vector, "k": k}}}, |
|
|
|
} |
|
|
|
|
|
|
|
if filters is not None: |
|
|
|
# when using filter, transform filter from List[Dict] to Dict as valid format |
|
|
|
filters = {"bool": {"must": filters}} if len(filters) > 1 else filters[0] |
|
|
|
search_query["query"]["knn"][vector_field]["filter"] = filters # filter should be Dict |
|
|
|
if filter_type: |
|
|
|
final_ext["lvector"]["filter_type"] = filter_type |
|
|
|
|
|
|
|
if final_ext != {"lvector": {}}: |
|
|
|
search_query["ext"] = final_ext |
|
|
|
return search_query |
|
|
|
|
|
|
|
|
|
|
|
class LindormVectorStoreFactory(AbstractVectorFactory): |
|
|
|
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> LindormVectorStore: |
|
|
|
if dataset.index_struct_dict: |
|
|
|
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"] |
|
|
|
collection_name = class_prefix |
|
|
|
else: |
|
|
|
dataset_id = dataset.id |
|
|
|
collection_name = Dataset.gen_collection_name_by_id(dataset_id) |
|
|
|
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.LINDORM, collection_name)) |
|
|
|
lindorm_config = LindormVectorStoreConfig( |
|
|
|
hosts=dify_config.LINDORM_URL, |
|
|
|
username=dify_config.LINDORM_USERNAME, |
|
|
|
password=dify_config.LINDORM_PASSWORD, |
|
|
|
) |
|
|
|
return LindormVectorStore(collection_name, lindorm_config) |