- import json
 - from abc import ABC, abstractmethod
 - from collections.abc import Generator
 - from typing import Union
 - 
 - from core.agent.base_agent_runner import BaseAgentRunner
 - from core.agent.entities import AgentScratchpadUnit
 - from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
 - from core.app.apps.base_app_queue_manager import PublishFrom
 - from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
 - from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
 - from core.model_runtime.entities.message_entities import (
 -     AssistantPromptMessage,
 -     PromptMessage,
 -     ToolPromptMessage,
 -     UserPromptMessage,
 - )
 - from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
 - from core.tools.entities.tool_entities import ToolInvokeMeta
 - from core.tools.tool.tool import Tool
 - from core.tools.tool_engine import ToolEngine
 - from models.model import Message
 - 
 - 
 - class CotAgentRunner(BaseAgentRunner, ABC):
 -     _is_first_iteration = True
 -     _ignore_observation_providers = ['wenxin']
 -     _historic_prompt_messages: list[PromptMessage] = None
 -     _agent_scratchpad: list[AgentScratchpadUnit] = None
 -     _instruction: str = None
 -     _query: str = None
 -     _prompt_messages_tools: list[PromptMessage] = None
 - 
 -     def run(self, message: Message,
 -         query: str,
 -         inputs: dict[str, str],
 -     ) -> Union[Generator, LLMResult]:
 -         """
 -         Run Cot agent application
 -         """
 -         app_generate_entity = self.application_generate_entity
 -         self._repack_app_generate_entity(app_generate_entity)
 -         self._init_react_state(query)
 - 
 -         # check model mode
 -         if 'Observation' not in app_generate_entity.model_conf.stop:
 -             if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
 -                 app_generate_entity.model_conf.stop.append('Observation')
 - 
 -         app_config = self.app_config
 - 
 -         # init instruction
 -         inputs = inputs or {}
 -         instruction = app_config.prompt_template.simple_prompt_template
 -         self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
 - 
 -         iteration_step = 1
 -         max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
 - 
 -         # convert tools into ModelRuntime Tool format
 -         tool_instances, self._prompt_messages_tools = self._init_prompt_tools()
 - 
 -         prompt_messages = self._organize_prompt_messages()
 -         
 -         function_call_state = True
 -         llm_usage = {
 -             'usage': None
 -         }
 -         final_answer = ''
 - 
 -         def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
 -             if not final_llm_usage_dict['usage']:
 -                 final_llm_usage_dict['usage'] = usage
 -             else:
 -                 llm_usage = final_llm_usage_dict['usage']
 -                 llm_usage.prompt_tokens += usage.prompt_tokens
 -                 llm_usage.completion_tokens += usage.completion_tokens
 -                 llm_usage.prompt_price += usage.prompt_price
 -                 llm_usage.completion_price += usage.completion_price
 - 
 -         model_instance = self.model_instance
 - 
 -         while function_call_state and iteration_step <= max_iteration_steps:
 -             # continue to run until there is not any tool call
 -             function_call_state = False
 - 
 -             if iteration_step == max_iteration_steps:
 -                 # the last iteration, remove all tools
 -                 self._prompt_messages_tools = []
 - 
 -             message_file_ids = []
 - 
 -             agent_thought = self.create_agent_thought(
 -                 message_id=message.id,
 -                 message='',
 -                 tool_name='',
 -                 tool_input='',
 -                 messages_ids=message_file_ids
 -             )
 - 
 -             if iteration_step > 1:
 -                 self.queue_manager.publish(QueueAgentThoughtEvent(
 -                     agent_thought_id=agent_thought.id
 -                 ), PublishFrom.APPLICATION_MANAGER)
 - 
 -             # recalc llm max tokens
 -             prompt_messages = self._organize_prompt_messages()
 -             self.recalc_llm_max_tokens(self.model_config, prompt_messages)
 -             # invoke model
 -             chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
 -                 prompt_messages=prompt_messages,
 -                 model_parameters=app_generate_entity.model_conf.parameters,
 -                 tools=[],
 -                 stop=app_generate_entity.model_conf.stop,
 -                 stream=True,
 -                 user=self.user_id,
 -                 callbacks=[],
 -             )
 - 
 -             # check llm result
 -             if not chunks:
 -                 raise ValueError("failed to invoke llm")
 -             
 -             usage_dict = {}
 -             react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
 -             scratchpad = AgentScratchpadUnit(
 -                 agent_response='',
 -                 thought='',
 -                 action_str='',
 -                 observation='',
 -                 action=None,
 -             )
 - 
 -             # publish agent thought if it's first iteration
 -             if iteration_step == 1:
 -                 self.queue_manager.publish(QueueAgentThoughtEvent(
 -                     agent_thought_id=agent_thought.id
 -                 ), PublishFrom.APPLICATION_MANAGER)
 - 
 -             for chunk in react_chunks:
 -                 if isinstance(chunk, AgentScratchpadUnit.Action):
 -                     action = chunk
 -                     # detect action
 -                     scratchpad.agent_response += json.dumps(chunk.model_dump())
 -                     scratchpad.action_str = json.dumps(chunk.model_dump())
 -                     scratchpad.action = action
 -                 else:
 -                     scratchpad.agent_response += chunk
 -                     scratchpad.thought += chunk
 -                     yield LLMResultChunk(
 -                         model=self.model_config.model,
 -                         prompt_messages=prompt_messages,
 -                         system_fingerprint='',
 -                         delta=LLMResultChunkDelta(
 -                             index=0,
 -                             message=AssistantPromptMessage(
 -                                 content=chunk
 -                             ),
 -                             usage=None
 -                         )
 -                     )
 - 
 -             scratchpad.thought = scratchpad.thought.strip() or 'I am thinking about how to help you'
 -             self._agent_scratchpad.append(scratchpad)
 -             
 -             # get llm usage
 -             if 'usage' in usage_dict:
 -                 increase_usage(llm_usage, usage_dict['usage'])
 -             else:
 -                 usage_dict['usage'] = LLMUsage.empty_usage()
 -             
 -             self.save_agent_thought(
 -                 agent_thought=agent_thought,
 -                 tool_name=scratchpad.action.action_name if scratchpad.action else '',
 -                 tool_input={
 -                     scratchpad.action.action_name: scratchpad.action.action_input
 -                 } if scratchpad.action else {},
 -                 tool_invoke_meta={},
 -                 thought=scratchpad.thought,
 -                 observation='',
 -                 answer=scratchpad.agent_response,
 -                 messages_ids=[],
 -                 llm_usage=usage_dict['usage']
 -             )
 -             
 -             if not scratchpad.is_final():
 -                 self.queue_manager.publish(QueueAgentThoughtEvent(
 -                     agent_thought_id=agent_thought.id
 -                 ), PublishFrom.APPLICATION_MANAGER)
 - 
 -             if not scratchpad.action:
 -                 # failed to extract action, return final answer directly
 -                 final_answer = ''
 -             else:
 -                 if scratchpad.action.action_name.lower() == "final answer":
 -                     # action is final answer, return final answer directly
 -                     try:
 -                         if isinstance(scratchpad.action.action_input, dict):
 -                             final_answer = json.dumps(scratchpad.action.action_input)
 -                         elif isinstance(scratchpad.action.action_input, str):
 -                             final_answer = scratchpad.action.action_input
 -                         else:
 -                             final_answer = f'{scratchpad.action.action_input}'
 -                     except json.JSONDecodeError:
 -                         final_answer = f'{scratchpad.action.action_input}'
 -                 else:
 -                     function_call_state = True
 -                     # action is tool call, invoke tool
 -                     tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
 -                         action=scratchpad.action, 
 -                         tool_instances=tool_instances,
 -                         message_file_ids=message_file_ids
 -                     )
 -                     scratchpad.observation = tool_invoke_response
 -                     scratchpad.agent_response = tool_invoke_response
 - 
 -                     self.save_agent_thought(
 -                         agent_thought=agent_thought,
 -                         tool_name=scratchpad.action.action_name,
 -                         tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
 -                         thought=scratchpad.thought,
 -                         observation={scratchpad.action.action_name: tool_invoke_response},
 -                         tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
 -                         answer=scratchpad.agent_response,
 -                         messages_ids=message_file_ids,
 -                         llm_usage=usage_dict['usage']
 -                     )
 - 
 -                     self.queue_manager.publish(QueueAgentThoughtEvent(
 -                         agent_thought_id=agent_thought.id
 -                     ), PublishFrom.APPLICATION_MANAGER)
 - 
 -                 # update prompt tool message
 -                 for prompt_tool in self._prompt_messages_tools:
 -                     self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
 - 
 -             iteration_step += 1
 - 
 -         yield LLMResultChunk(
 -             model=model_instance.model,
 -             prompt_messages=prompt_messages,
 -             delta=LLMResultChunkDelta(
 -                 index=0,
 -                 message=AssistantPromptMessage(
 -                     content=final_answer
 -                 ),
 -                 usage=llm_usage['usage']
 -             ),
 -             system_fingerprint=''
 -         )
 - 
 -         # save agent thought
 -         self.save_agent_thought(
 -             agent_thought=agent_thought, 
 -             tool_name='',
 -             tool_input={},
 -             tool_invoke_meta={},
 -             thought=final_answer,
 -             observation={}, 
 -             answer=final_answer,
 -             messages_ids=[]
 -         )
 - 
 -         self.update_db_variables(self.variables_pool, self.db_variables_pool)
 -         # publish end event
 -         self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
 -             model=model_instance.model,
 -             prompt_messages=prompt_messages,
 -             message=AssistantPromptMessage(
 -                 content=final_answer
 -             ),
 -             usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
 -             system_fingerprint=''
 -         )), PublishFrom.APPLICATION_MANAGER)
 - 
 -     def _handle_invoke_action(self, action: AgentScratchpadUnit.Action, 
 -                               tool_instances: dict[str, Tool],
 -                               message_file_ids: list[str]) -> tuple[str, ToolInvokeMeta]:
 -         """
 -         handle invoke action
 -         :param action: action
 -         :param tool_instances: tool instances
 -         :return: observation, meta
 -         """
 -         # action is tool call, invoke tool
 -         tool_call_name = action.action_name
 -         tool_call_args = action.action_input
 -         tool_instance = tool_instances.get(tool_call_name)
 - 
 -         if not tool_instance:
 -             answer = f"there is not a tool named {tool_call_name}"
 -             return answer, ToolInvokeMeta.error_instance(answer)
 -         
 -         if isinstance(tool_call_args, str):
 -             try:
 -                 tool_call_args = json.loads(tool_call_args)
 -             except json.JSONDecodeError:
 -                 pass
 - 
 -         # invoke tool
 -         tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
 -             tool=tool_instance,
 -             tool_parameters=tool_call_args,
 -             user_id=self.user_id,
 -             tenant_id=self.tenant_id,
 -             message=self.message,
 -             invoke_from=self.application_generate_entity.invoke_from,
 -             agent_tool_callback=self.agent_callback
 -         )
 - 
 -         # publish files
 -         for message_file, save_as in message_files:
 -             if save_as:
 -                 self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
 - 
 -             # publish message file
 -             self.queue_manager.publish(QueueMessageFileEvent(
 -                 message_file_id=message_file.id
 -             ), PublishFrom.APPLICATION_MANAGER)
 -             # add message file ids
 -             message_file_ids.append(message_file.id)
 - 
 -         return tool_invoke_response, tool_invoke_meta
 - 
 -     def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
 -         """
 -         convert dict to action
 -         """
 -         return AgentScratchpadUnit.Action(
 -             action_name=action['action'],
 -             action_input=action['action_input']
 -         )
 - 
 -     def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
 -         """
 -         fill in inputs from external data tools
 -         """
 -         for key, value in inputs.items():
 -             try:
 -                 instruction = instruction.replace(f'{{{{{key}}}}}', str(value))
 -             except Exception as e:
 -                 continue
 - 
 -         return instruction
 -     
 -     def _init_react_state(self, query) -> None:
 -         """
 -         init agent scratchpad
 -         """
 -         self._query = query
 -         self._agent_scratchpad = []
 -         self._historic_prompt_messages = self._organize_historic_prompt_messages()
 -     
 -     @abstractmethod
 -     def _organize_prompt_messages(self) -> list[PromptMessage]:
 -         """
 -             organize prompt messages
 -         """
 - 
 -     def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
 -         """
 -             format assistant message
 -         """
 -         message = ''
 -         for scratchpad in agent_scratchpad:
 -             if scratchpad.is_final():
 -                 message += f"Final Answer: {scratchpad.agent_response}"
 -             else:
 -                 message += f"Thought: {scratchpad.thought}\n\n"
 -                 if scratchpad.action_str:
 -                     message += f"Action: {scratchpad.action_str}\n\n"
 -                 if scratchpad.observation:
 -                     message += f"Observation: {scratchpad.observation}\n\n"
 - 
 -         return message
 - 
 -     def _organize_historic_prompt_messages(self, current_session_messages: list[PromptMessage] = None) -> list[PromptMessage]:
 -         """
 -             organize historic prompt messages
 -         """
 -         result: list[PromptMessage] = []
 -         scratchpad: list[AgentScratchpadUnit] = []
 -         current_scratchpad: AgentScratchpadUnit = None
 - 
 -         self.history_prompt_messages = AgentHistoryPromptTransform(
 -             model_config=self.model_config,
 -             prompt_messages=current_session_messages or [],
 -             history_messages=self.history_prompt_messages,
 -             memory=self.memory
 -         ).get_prompt()
 - 
 -         for message in self.history_prompt_messages:
 -             if isinstance(message, AssistantPromptMessage):
 -                 current_scratchpad = AgentScratchpadUnit(
 -                     agent_response=message.content,
 -                     thought=message.content or 'I am thinking about how to help you',
 -                     action_str='',
 -                     action=None,
 -                     observation=None,
 -                 )
 -                 if message.tool_calls:
 -                     try:
 -                         current_scratchpad.action = AgentScratchpadUnit.Action(
 -                             action_name=message.tool_calls[0].function.name,
 -                             action_input=json.loads(message.tool_calls[0].function.arguments)
 -                         )
 -                         current_scratchpad.action_str = json.dumps(
 -                             current_scratchpad.action.to_dict()
 -                         )
 -                     except:
 -                         pass
 -                 
 -                 scratchpad.append(current_scratchpad)
 -             elif isinstance(message, ToolPromptMessage):
 -                 if current_scratchpad:
 -                     current_scratchpad.observation = message.content
 -             elif isinstance(message, UserPromptMessage):
 -                 result.append(message)
 - 
 -                 if scratchpad:
 -                     result.append(AssistantPromptMessage(
 -                         content=self._format_assistant_message(scratchpad)
 -                     ))
 - 
 -                 scratchpad = []
 - 
 -         if scratchpad:
 -             result.append(AssistantPromptMessage(
 -                 content=self._format_assistant_message(scratchpad)
 -             ))
 -         
 -         return result
 
 
  |