| 
                        1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 | 
                        - import logging
 - import time
 - 
 - import click
 - from celery import shared_task
 - from core.index.index import IndexBuilder
 - from extensions.ext_database import db
 - from langchain.schema import Document
 - from models.dataset import Dataset
 - from models.dataset import Document as DatasetDocument
 - from models.dataset import DocumentSegment
 - 
 - 
 - @shared_task(queue='dataset')
 - def deal_dataset_vector_index_task(dataset_id: str, action: str):
 -     """
 -     Async deal dataset from index
 -     :param dataset_id: dataset_id
 -     :param action: action
 -     Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
 -     """
 -     logging.info(click.style('Start deal dataset vector index: {}'.format(dataset_id), fg='green'))
 -     start_at = time.perf_counter()
 - 
 -     try:
 -         dataset = Dataset.query.filter_by(
 -             id=dataset_id
 -         ).first()
 - 
 -         if not dataset:
 -             raise Exception('Dataset not found')
 - 
 -         if action == "remove":
 -             index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=True)
 -             index.delete_by_group_id(dataset.id)
 -         elif action == "add":
 -             dataset_documents = db.session.query(DatasetDocument).filter(
 -                 DatasetDocument.dataset_id == dataset_id,
 -                 DatasetDocument.indexing_status == 'completed',
 -                 DatasetDocument.enabled == True,
 -                 DatasetDocument.archived == False,
 -             ).all()
 - 
 -             if dataset_documents:
 -                 # save vector index
 -                 index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=False)
 -                 documents = []
 -                 for dataset_document in dataset_documents:
 -                     # delete from vector index
 -                     segments = db.session.query(DocumentSegment).filter(
 -                         DocumentSegment.document_id == dataset_document.id,
 -                         DocumentSegment.enabled == True
 -                     ) .order_by(DocumentSegment.position.asc()).all()
 -                     for segment in segments:
 -                         document = Document(
 -                             page_content=segment.content,
 -                             metadata={
 -                                 "doc_id": segment.index_node_id,
 -                                 "doc_hash": segment.index_node_hash,
 -                                 "document_id": segment.document_id,
 -                                 "dataset_id": segment.dataset_id,
 -                             }
 -                         )
 - 
 -                         documents.append(document)
 - 
 -                 # save vector index
 -                 index.create(documents)
 - 
 -         end_at = time.perf_counter()
 -         logging.info(
 -             click.style('Deal dataset vector index: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
 -     except Exception:
 -         logging.exception("Deal dataset vector index failed")
 
 
  |