- import json
 - import logging
 - import uuid
 - from collections.abc import Mapping, Sequence
 - from datetime import datetime, timezone
 - from typing import Optional, Union, cast
 - 
 - from core.agent.entities import AgentEntity, AgentToolEntity
 - from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
 - from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
 - from core.app.apps.base_app_queue_manager import AppQueueManager
 - from core.app.apps.base_app_runner import AppRunner
 - from core.app.entities.app_invoke_entities import (
 -     AgentChatAppGenerateEntity,
 -     ModelConfigWithCredentialsEntity,
 - )
 - from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
 - from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
 - from core.file.message_file_parser import MessageFileParser
 - from core.memory.token_buffer_memory import TokenBufferMemory
 - from core.model_manager import ModelInstance
 - from core.model_runtime.entities.llm_entities import LLMUsage
 - from core.model_runtime.entities.message_entities import (
 -     AssistantPromptMessage,
 -     PromptMessage,
 -     PromptMessageTool,
 -     SystemPromptMessage,
 -     TextPromptMessageContent,
 -     ToolPromptMessage,
 -     UserPromptMessage,
 - )
 - from core.model_runtime.entities.model_entities import ModelFeature
 - from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
 - from core.model_runtime.utils.encoders import jsonable_encoder
 - from core.tools.entities.tool_entities import (
 -     ToolParameter,
 -     ToolRuntimeVariablePool,
 - )
 - from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
 - from core.tools.tool.tool import Tool
 - from core.tools.tool_manager import ToolManager
 - from core.tools.utils.tool_parameter_converter import ToolParameterConverter
 - from extensions.ext_database import db
 - from models.model import Conversation, Message, MessageAgentThought
 - from models.tools import ToolConversationVariables
 - 
 - logger = logging.getLogger(__name__)
 - 
 - 
 - class BaseAgentRunner(AppRunner):
 -     def __init__(
 -         self,
 -         tenant_id: str,
 -         application_generate_entity: AgentChatAppGenerateEntity,
 -         conversation: Conversation,
 -         app_config: AgentChatAppConfig,
 -         model_config: ModelConfigWithCredentialsEntity,
 -         config: AgentEntity,
 -         queue_manager: AppQueueManager,
 -         message: Message,
 -         user_id: str,
 -         memory: Optional[TokenBufferMemory] = None,
 -         prompt_messages: Optional[list[PromptMessage]] = None,
 -         variables_pool: Optional[ToolRuntimeVariablePool] = None,
 -         db_variables: Optional[ToolConversationVariables] = None,
 -         model_instance: ModelInstance = None,
 -     ) -> None:
 -         """
 -         Agent runner
 -         :param tenant_id: tenant id
 -         :param application_generate_entity: application generate entity
 -         :param conversation: conversation
 -         :param app_config: app generate entity
 -         :param model_config: model config
 -         :param config: dataset config
 -         :param queue_manager: queue manager
 -         :param message: message
 -         :param user_id: user id
 -         :param memory: memory
 -         :param prompt_messages: prompt messages
 -         :param variables_pool: variables pool
 -         :param db_variables: db variables
 -         :param model_instance: model instance
 -         """
 -         self.tenant_id = tenant_id
 -         self.application_generate_entity = application_generate_entity
 -         self.conversation = conversation
 -         self.app_config = app_config
 -         self.model_config = model_config
 -         self.config = config
 -         self.queue_manager = queue_manager
 -         self.message = message
 -         self.user_id = user_id
 -         self.memory = memory
 -         self.history_prompt_messages = self.organize_agent_history(prompt_messages=prompt_messages or [])
 -         self.variables_pool = variables_pool
 -         self.db_variables_pool = db_variables
 -         self.model_instance = model_instance
 - 
 -         # init callback
 -         self.agent_callback = DifyAgentCallbackHandler()
 -         # init dataset tools
 -         hit_callback = DatasetIndexToolCallbackHandler(
 -             queue_manager=queue_manager,
 -             app_id=self.app_config.app_id,
 -             message_id=message.id,
 -             user_id=user_id,
 -             invoke_from=self.application_generate_entity.invoke_from,
 -         )
 -         self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
 -             tenant_id=tenant_id,
 -             dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
 -             retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
 -             return_resource=app_config.additional_features.show_retrieve_source,
 -             invoke_from=application_generate_entity.invoke_from,
 -             hit_callback=hit_callback,
 -         )
 -         # get how many agent thoughts have been created
 -         self.agent_thought_count = (
 -             db.session.query(MessageAgentThought)
 -             .filter(
 -                 MessageAgentThought.message_id == self.message.id,
 -             )
 -             .count()
 -         )
 -         db.session.close()
 - 
 -         # check if model supports stream tool call
 -         llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
 -         model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
 -         if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
 -             self.stream_tool_call = True
 -         else:
 -             self.stream_tool_call = False
 - 
 -         # check if model supports vision
 -         if model_schema and ModelFeature.VISION in (model_schema.features or []):
 -             self.files = application_generate_entity.files
 -         else:
 -             self.files = []
 -         self.query = None
 -         self._current_thoughts: list[PromptMessage] = []
 - 
 -     def _repack_app_generate_entity(
 -         self, app_generate_entity: AgentChatAppGenerateEntity
 -     ) -> AgentChatAppGenerateEntity:
 -         """
 -         Repack app generate entity
 -         """
 -         if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
 -             app_generate_entity.app_config.prompt_template.simple_prompt_template = ""
 - 
 -         return app_generate_entity
 - 
 -     def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
 -         """
 -         convert tool to prompt message tool
 -         """
 -         tool_entity = ToolManager.get_agent_tool_runtime(
 -             tenant_id=self.tenant_id,
 -             app_id=self.app_config.app_id,
 -             agent_tool=tool,
 -             invoke_from=self.application_generate_entity.invoke_from,
 -         )
 -         tool_entity.load_variables(self.variables_pool)
 - 
 -         message_tool = PromptMessageTool(
 -             name=tool.tool_name,
 -             description=tool_entity.description.llm,
 -             parameters={
 -                 "type": "object",
 -                 "properties": {},
 -                 "required": [],
 -             },
 -         )
 - 
 -         parameters = tool_entity.get_all_runtime_parameters()
 -         for parameter in parameters:
 -             if parameter.form != ToolParameter.ToolParameterForm.LLM:
 -                 continue
 - 
 -             parameter_type = ToolParameterConverter.get_parameter_type(parameter.type)
 -             enum = []
 -             if parameter.type == ToolParameter.ToolParameterType.SELECT:
 -                 enum = [option.value for option in parameter.options]
 - 
 -             message_tool.parameters["properties"][parameter.name] = {
 -                 "type": parameter_type,
 -                 "description": parameter.llm_description or "",
 -             }
 - 
 -             if len(enum) > 0:
 -                 message_tool.parameters["properties"][parameter.name]["enum"] = enum
 - 
 -             if parameter.required:
 -                 message_tool.parameters["required"].append(parameter.name)
 - 
 -         return message_tool, tool_entity
 - 
 -     def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
 -         """
 -         convert dataset retriever tool to prompt message tool
 -         """
 -         prompt_tool = PromptMessageTool(
 -             name=tool.identity.name,
 -             description=tool.description.llm,
 -             parameters={
 -                 "type": "object",
 -                 "properties": {},
 -                 "required": [],
 -             },
 -         )
 - 
 -         for parameter in tool.get_runtime_parameters():
 -             parameter_type = "string"
 - 
 -             prompt_tool.parameters["properties"][parameter.name] = {
 -                 "type": parameter_type,
 -                 "description": parameter.llm_description or "",
 -             }
 - 
 -             if parameter.required:
 -                 if parameter.name not in prompt_tool.parameters["required"]:
 -                     prompt_tool.parameters["required"].append(parameter.name)
 - 
 -         return prompt_tool
 - 
 -     def _init_prompt_tools(self) -> tuple[Mapping[str, Tool], Sequence[PromptMessageTool]]:
 -         """
 -         Init tools
 -         """
 -         tool_instances = {}
 -         prompt_messages_tools = []
 - 
 -         for tool in self.app_config.agent.tools if self.app_config.agent else []:
 -             try:
 -                 prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
 -             except Exception:
 -                 # api tool may be deleted
 -                 continue
 -             # save tool entity
 -             tool_instances[tool.tool_name] = tool_entity
 -             # save prompt tool
 -             prompt_messages_tools.append(prompt_tool)
 - 
 -         # convert dataset tools into ModelRuntime Tool format
 -         for dataset_tool in self.dataset_tools:
 -             prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
 -             # save prompt tool
 -             prompt_messages_tools.append(prompt_tool)
 -             # save tool entity
 -             tool_instances[dataset_tool.identity.name] = dataset_tool
 - 
 -         return tool_instances, prompt_messages_tools
 - 
 -     def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
 -         """
 -         update prompt message tool
 -         """
 -         # try to get tool runtime parameters
 -         tool_runtime_parameters = tool.get_runtime_parameters() or []
 - 
 -         for parameter in tool_runtime_parameters:
 -             if parameter.form != ToolParameter.ToolParameterForm.LLM:
 -                 continue
 - 
 -             parameter_type = ToolParameterConverter.get_parameter_type(parameter.type)
 -             enum = []
 -             if parameter.type == ToolParameter.ToolParameterType.SELECT:
 -                 enum = [option.value for option in parameter.options]
 - 
 -             prompt_tool.parameters["properties"][parameter.name] = {
 -                 "type": parameter_type,
 -                 "description": parameter.llm_description or "",
 -             }
 - 
 -             if len(enum) > 0:
 -                 prompt_tool.parameters["properties"][parameter.name]["enum"] = enum
 - 
 -             if parameter.required:
 -                 if parameter.name not in prompt_tool.parameters["required"]:
 -                     prompt_tool.parameters["required"].append(parameter.name)
 - 
 -         return prompt_tool
 - 
 -     def create_agent_thought(
 -         self, message_id: str, message: str, tool_name: str, tool_input: str, messages_ids: list[str]
 -     ) -> MessageAgentThought:
 -         """
 -         Create agent thought
 -         """
 -         thought = MessageAgentThought(
 -             message_id=message_id,
 -             message_chain_id=None,
 -             thought="",
 -             tool=tool_name,
 -             tool_labels_str="{}",
 -             tool_meta_str="{}",
 -             tool_input=tool_input,
 -             message=message,
 -             message_token=0,
 -             message_unit_price=0,
 -             message_price_unit=0,
 -             message_files=json.dumps(messages_ids) if messages_ids else "",
 -             answer="",
 -             observation="",
 -             answer_token=0,
 -             answer_unit_price=0,
 -             answer_price_unit=0,
 -             tokens=0,
 -             total_price=0,
 -             position=self.agent_thought_count + 1,
 -             currency="USD",
 -             latency=0,
 -             created_by_role="account",
 -             created_by=self.user_id,
 -         )
 - 
 -         db.session.add(thought)
 -         db.session.commit()
 -         db.session.refresh(thought)
 -         db.session.close()
 - 
 -         self.agent_thought_count += 1
 - 
 -         return thought
 - 
 -     def save_agent_thought(
 -         self,
 -         agent_thought: MessageAgentThought,
 -         tool_name: str,
 -         tool_input: Union[str, dict],
 -         thought: str,
 -         observation: Union[str, dict],
 -         tool_invoke_meta: Union[str, dict],
 -         answer: str,
 -         messages_ids: list[str],
 -         llm_usage: LLMUsage = None,
 -     ) -> MessageAgentThought:
 -         """
 -         Save agent thought
 -         """
 -         agent_thought = db.session.query(MessageAgentThought).filter(MessageAgentThought.id == agent_thought.id).first()
 - 
 -         if thought is not None:
 -             agent_thought.thought = thought
 - 
 -         if tool_name is not None:
 -             agent_thought.tool = tool_name
 - 
 -         if tool_input is not None:
 -             if isinstance(tool_input, dict):
 -                 try:
 -                     tool_input = json.dumps(tool_input, ensure_ascii=False)
 -                 except Exception as e:
 -                     tool_input = json.dumps(tool_input)
 - 
 -             agent_thought.tool_input = tool_input
 - 
 -         if observation is not None:
 -             if isinstance(observation, dict):
 -                 try:
 -                     observation = json.dumps(observation, ensure_ascii=False)
 -                 except Exception as e:
 -                     observation = json.dumps(observation)
 - 
 -             agent_thought.observation = observation
 - 
 -         if answer is not None:
 -             agent_thought.answer = answer
 - 
 -         if messages_ids is not None and len(messages_ids) > 0:
 -             agent_thought.message_files = json.dumps(messages_ids)
 - 
 -         if llm_usage:
 -             agent_thought.message_token = llm_usage.prompt_tokens
 -             agent_thought.message_price_unit = llm_usage.prompt_price_unit
 -             agent_thought.message_unit_price = llm_usage.prompt_unit_price
 -             agent_thought.answer_token = llm_usage.completion_tokens
 -             agent_thought.answer_price_unit = llm_usage.completion_price_unit
 -             agent_thought.answer_unit_price = llm_usage.completion_unit_price
 -             agent_thought.tokens = llm_usage.total_tokens
 -             agent_thought.total_price = llm_usage.total_price
 - 
 -         # check if tool labels is not empty
 -         labels = agent_thought.tool_labels or {}
 -         tools = agent_thought.tool.split(";") if agent_thought.tool else []
 -         for tool in tools:
 -             if not tool:
 -                 continue
 -             if tool not in labels:
 -                 tool_label = ToolManager.get_tool_label(tool)
 -                 if tool_label:
 -                     labels[tool] = tool_label.to_dict()
 -                 else:
 -                     labels[tool] = {"en_US": tool, "zh_Hans": tool}
 - 
 -         agent_thought.tool_labels_str = json.dumps(labels)
 - 
 -         if tool_invoke_meta is not None:
 -             if isinstance(tool_invoke_meta, dict):
 -                 try:
 -                     tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
 -                 except Exception as e:
 -                     tool_invoke_meta = json.dumps(tool_invoke_meta)
 - 
 -             agent_thought.tool_meta_str = tool_invoke_meta
 - 
 -         db.session.commit()
 -         db.session.close()
 - 
 -     def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
 -         """
 -         convert tool variables to db variables
 -         """
 -         db_variables = (
 -             db.session.query(ToolConversationVariables)
 -             .filter(
 -                 ToolConversationVariables.conversation_id == self.message.conversation_id,
 -             )
 -             .first()
 -         )
 - 
 -         db_variables.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
 -         db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
 -         db.session.commit()
 -         db.session.close()
 - 
 -     def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 -         """
 -         Organize agent history
 -         """
 -         result = []
 -         # check if there is a system message in the beginning of the conversation
 -         for prompt_message in prompt_messages:
 -             if isinstance(prompt_message, SystemPromptMessage):
 -                 result.append(prompt_message)
 - 
 -         messages: list[Message] = (
 -             db.session.query(Message)
 -             .filter(
 -                 Message.conversation_id == self.message.conversation_id,
 -             )
 -             .order_by(Message.created_at.asc())
 -             .all()
 -         )
 - 
 -         for message in messages:
 -             if message.id == self.message.id:
 -                 continue
 - 
 -             result.append(self.organize_agent_user_prompt(message))
 -             agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
 -             if agent_thoughts:
 -                 for agent_thought in agent_thoughts:
 -                     tools = agent_thought.tool
 -                     if tools:
 -                         tools = tools.split(";")
 -                         tool_calls: list[AssistantPromptMessage.ToolCall] = []
 -                         tool_call_response: list[ToolPromptMessage] = []
 -                         try:
 -                             tool_inputs = json.loads(agent_thought.tool_input)
 -                         except Exception as e:
 -                             tool_inputs = {tool: {} for tool in tools}
 -                         try:
 -                             tool_responses = json.loads(agent_thought.observation)
 -                         except Exception as e:
 -                             tool_responses = dict.fromkeys(tools, agent_thought.observation)
 - 
 -                         for tool in tools:
 -                             # generate a uuid for tool call
 -                             tool_call_id = str(uuid.uuid4())
 -                             tool_calls.append(
 -                                 AssistantPromptMessage.ToolCall(
 -                                     id=tool_call_id,
 -                                     type="function",
 -                                     function=AssistantPromptMessage.ToolCall.ToolCallFunction(
 -                                         name=tool,
 -                                         arguments=json.dumps(tool_inputs.get(tool, {})),
 -                                     ),
 -                                 )
 -                             )
 -                             tool_call_response.append(
 -                                 ToolPromptMessage(
 -                                     content=tool_responses.get(tool, agent_thought.observation),
 -                                     name=tool,
 -                                     tool_call_id=tool_call_id,
 -                                 )
 -                             )
 - 
 -                         result.extend(
 -                             [
 -                                 AssistantPromptMessage(
 -                                     content=agent_thought.thought,
 -                                     tool_calls=tool_calls,
 -                                 ),
 -                                 *tool_call_response,
 -                             ]
 -                         )
 -                     if not tools:
 -                         result.append(AssistantPromptMessage(content=agent_thought.thought))
 -             else:
 -                 if message.answer:
 -                     result.append(AssistantPromptMessage(content=message.answer))
 - 
 -         db.session.close()
 - 
 -         return result
 - 
 -     def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
 -         message_file_parser = MessageFileParser(
 -             tenant_id=self.tenant_id,
 -             app_id=self.app_config.app_id,
 -         )
 - 
 -         files = message.message_files
 -         if files:
 -             file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
 - 
 -             if file_extra_config:
 -                 file_objs = message_file_parser.transform_message_files(files, file_extra_config)
 -             else:
 -                 file_objs = []
 - 
 -             if not file_objs:
 -                 return UserPromptMessage(content=message.query)
 -             else:
 -                 prompt_message_contents = [TextPromptMessageContent(data=message.query)]
 -                 for file_obj in file_objs:
 -                     prompt_message_contents.append(file_obj.prompt_message_content)
 - 
 -                 return UserPromptMessage(content=prompt_message_contents)
 -         else:
 -             return UserPromptMessage(content=message.query)
 
 
  |