| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661 | 
                        - import datetime
 - import json
 - import math
 - import random
 - import string
 - import time
 - import uuid
 - 
 - import click
 - from tqdm import tqdm
 - from flask import current_app
 - from langchain.embeddings import OpenAIEmbeddings
 - from werkzeug.exceptions import NotFound
 - 
 - from core.embedding.cached_embedding import CacheEmbedding
 - from core.index.index import IndexBuilder
 - from core.model_providers.model_factory import ModelFactory
 - from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
 - from core.model_providers.models.entity.model_params import ModelType
 - from core.model_providers.providers.hosted import hosted_model_providers
 - from core.model_providers.providers.openai_provider import OpenAIProvider
 - from libs.password import password_pattern, valid_password, hash_password
 - from libs.helper import email as email_validate
 - from extensions.ext_database import db
 - from libs.rsa import generate_key_pair
 - from models.account import InvitationCode, Tenant, TenantAccountJoin
 - from models.dataset import Dataset, DatasetQuery, Document, DatasetCollectionBinding
 - from models.model import Account, AppModelConfig, App
 - import secrets
 - import base64
 - 
 - from models.provider import Provider, ProviderType, ProviderQuotaType, ProviderModel
 - 
 - 
 - @click.command('reset-password', help='Reset the account password.')
 - @click.option('--email', prompt=True, help='The email address of the account whose password you need to reset')
 - @click.option('--new-password', prompt=True, help='the new password.')
 - @click.option('--password-confirm', prompt=True, help='the new password confirm.')
 - def reset_password(email, new_password, password_confirm):
 -     if str(new_password).strip() != str(password_confirm).strip():
 -         click.echo(click.style('sorry. The two passwords do not match.', fg='red'))
 -         return
 -     account = db.session.query(Account). \
 -         filter(Account.email == email). \
 -         one_or_none()
 -     if not account:
 -         click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))
 -         return
 -     try:
 -         valid_password(new_password)
 -     except:
 -         click.echo(
 -             click.style('sorry. The passwords must match {} '.format(password_pattern), fg='red'))
 -         return
 - 
 -     # generate password salt
 -     salt = secrets.token_bytes(16)
 -     base64_salt = base64.b64encode(salt).decode()
 - 
 -     # encrypt password with salt
 -     password_hashed = hash_password(new_password, salt)
 -     base64_password_hashed = base64.b64encode(password_hashed).decode()
 -     account.password = base64_password_hashed
 -     account.password_salt = base64_salt
 -     db.session.commit()
 -     click.echo(click.style('Congratulations!, password has been reset.', fg='green'))
 - 
 - 
 - @click.command('reset-email', help='Reset the account email.')
 - @click.option('--email', prompt=True, help='The old email address of the account whose email you need to reset')
 - @click.option('--new-email', prompt=True, help='the new email.')
 - @click.option('--email-confirm', prompt=True, help='the new email confirm.')
 - def reset_email(email, new_email, email_confirm):
 -     if str(new_email).strip() != str(email_confirm).strip():
 -         click.echo(click.style('Sorry, new email and confirm email do not match.', fg='red'))
 -         return
 -     account = db.session.query(Account). \
 -         filter(Account.email == email). \
 -         one_or_none()
 -     if not account:
 -         click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))
 -         return
 -     try:
 -         email_validate(new_email)
 -     except:
 -         click.echo(
 -             click.style('sorry. {} is not a valid email. '.format(email), fg='red'))
 -         return
 - 
 -     account.email = new_email
 -     db.session.commit()
 -     click.echo(click.style('Congratulations!, email has been reset.', fg='green'))
 - 
 - 
 - @click.command('reset-encrypt-key-pair', help='Reset the asymmetric key pair of workspace for encrypt LLM credentials. '
 -                                               'After the reset, all LLM credentials will become invalid, '
 -                                               'requiring re-entry.'
 -                                               'Only support SELF_HOSTED mode.')
 - @click.confirmation_option(prompt=click.style('Are you sure you want to reset encrypt key pair?'
 -                                               ' this operation cannot be rolled back!', fg='red'))
 - def reset_encrypt_key_pair():
 -     if current_app.config['EDITION'] != 'SELF_HOSTED':
 -         click.echo(click.style('Sorry, only support SELF_HOSTED mode.', fg='red'))
 -         return
 - 
 -     tenant = db.session.query(Tenant).first()
 -     if not tenant:
 -         click.echo(click.style('Sorry, no workspace found. Please enter /install to initialize.', fg='red'))
 -         return
 - 
 -     tenant.encrypt_public_key = generate_key_pair(tenant.id)
 - 
 -     db.session.query(Provider).filter(Provider.provider_type == 'custom').delete()
 -     db.session.query(ProviderModel).delete()
 -     db.session.commit()
 - 
 -     click.echo(click.style('Congratulations! '
 -                            'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
 - 
 - 
 - @click.command('generate-invitation-codes', help='Generate invitation codes.')
 - @click.option('--batch', help='The batch of invitation codes.')
 - @click.option('--count', prompt=True, help='Invitation codes count.')
 - def generate_invitation_codes(batch, count):
 -     if not batch:
 -         now = datetime.datetime.now()
 -         batch = now.strftime('%Y%m%d%H%M%S')
 - 
 -     if not count or int(count) <= 0:
 -         click.echo(click.style('sorry. the count must be greater than 0.', fg='red'))
 -         return
 - 
 -     count = int(count)
 - 
 -     click.echo('Start generate {} invitation codes for batch {}.'.format(count, batch))
 - 
 -     codes = ''
 -     for i in range(count):
 -         code = generate_invitation_code()
 -         invitation_code = InvitationCode(
 -             code=code,
 -             batch=batch
 -         )
 -         db.session.add(invitation_code)
 -         click.echo(code)
 - 
 -         codes += code + "\n"
 -     db.session.commit()
 - 
 -     filename = 'storage/invitation-codes-{}.txt'.format(batch)
 - 
 -     with open(filename, 'w') as f:
 -         f.write(codes)
 - 
 -     click.echo(click.style(
 -         'Congratulations! Generated {} invitation codes for batch {} and saved to the file \'{}\''.format(count, batch,
 -                                                                                                           filename),
 -         fg='green'))
 - 
 - 
 - def generate_invitation_code():
 -     code = generate_upper_string()
 -     while db.session.query(InvitationCode).filter(InvitationCode.code == code).count() > 0:
 -         code = generate_upper_string()
 - 
 -     return code
 - 
 - 
 - def generate_upper_string():
 -     letters_digits = string.ascii_uppercase + string.digits
 -     result = ""
 -     for i in range(8):
 -         result += random.choice(letters_digits)
 - 
 -     return result
 - 
 - 
 - @click.command('recreate-all-dataset-indexes', help='Recreate all dataset indexes.')
 - def recreate_all_dataset_indexes():
 -     click.echo(click.style('Start recreate all dataset indexes.', fg='green'))
 -     recreate_count = 0
 - 
 -     page = 1
 -     while True:
 -         try:
 -             datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
 -                 .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
 -         except NotFound:
 -             break
 - 
 -         page += 1
 -         for dataset in datasets:
 -             try:
 -                 click.echo('Recreating dataset index: {}'.format(dataset.id))
 -                 index = IndexBuilder.get_index(dataset, 'high_quality')
 -                 if index and index._is_origin():
 -                     index.recreate_dataset(dataset)
 -                     recreate_count += 1
 -                 else:
 -                     click.echo('passed.')
 -             except Exception as e:
 -                 click.echo(
 -                     click.style('Recreate dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
 -                 continue
 - 
 -     click.echo(click.style('Congratulations! Recreate {} dataset indexes.'.format(recreate_count), fg='green'))
 - 
 - 
 - @click.command('clean-unused-dataset-indexes', help='Clean unused dataset indexes.')
 - def clean_unused_dataset_indexes():
 -     click.echo(click.style('Start clean unused dataset indexes.', fg='green'))
 -     clean_days = int(current_app.config.get('CLEAN_DAY_SETTING'))
 -     start_at = time.perf_counter()
 -     thirty_days_ago = datetime.datetime.now() - datetime.timedelta(days=clean_days)
 -     page = 1
 -     while True:
 -         try:
 -             datasets = db.session.query(Dataset).filter(Dataset.created_at < thirty_days_ago) \
 -                 .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
 -         except NotFound:
 -             break
 -         page += 1
 -         for dataset in datasets:
 -             dataset_query = db.session.query(DatasetQuery).filter(
 -                 DatasetQuery.created_at > thirty_days_ago,
 -                 DatasetQuery.dataset_id == dataset.id
 -             ).all()
 -             if not dataset_query or len(dataset_query) == 0:
 -                 documents = db.session.query(Document).filter(
 -                     Document.dataset_id == dataset.id,
 -                     Document.indexing_status == 'completed',
 -                     Document.enabled == True,
 -                     Document.archived == False,
 -                     Document.updated_at > thirty_days_ago
 -                 ).all()
 -                 if not documents or len(documents) == 0:
 -                     try:
 -                         # remove index
 -                         vector_index = IndexBuilder.get_index(dataset, 'high_quality')
 -                         kw_index = IndexBuilder.get_index(dataset, 'economy')
 -                         # delete from vector index
 -                         if vector_index:
 -                             if dataset.collection_binding_id:
 -                                 vector_index.delete_by_group_id(dataset.id)
 -                             else:
 -                                 if dataset.collection_binding_id:
 -                                     vector_index.delete_by_group_id(dataset.id)
 -                                 else:
 -                                     vector_index.delete()
 -                         kw_index.delete()
 -                         # update document
 -                         update_params = {
 -                             Document.enabled: False
 -                         }
 - 
 -                         Document.query.filter_by(dataset_id=dataset.id).update(update_params)
 -                         db.session.commit()
 -                         click.echo(click.style('Cleaned unused dataset {} from db success!'.format(dataset.id),
 -                                                fg='green'))
 -                     except Exception as e:
 -                         click.echo(
 -                             click.style('clean dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
 -                                         fg='red'))
 -     end_at = time.perf_counter()
 -     click.echo(click.style('Cleaned unused dataset from db success latency: {}'.format(end_at - start_at), fg='green'))
 - 
 - 
 - @click.command('sync-anthropic-hosted-providers', help='Sync anthropic hosted providers.')
 - def sync_anthropic_hosted_providers():
 -     if not hosted_model_providers.anthropic:
 -         click.echo(click.style('Anthropic hosted provider is not configured.', fg='red'))
 -         return
 - 
 -     click.echo(click.style('Start sync anthropic hosted providers.', fg='green'))
 -     count = 0
 - 
 -     new_quota_limit = hosted_model_providers.anthropic.quota_limit
 - 
 -     page = 1
 -     while True:
 -         try:
 -             providers = db.session.query(Provider).filter(
 -                 Provider.provider_name == 'anthropic',
 -                 Provider.provider_type == ProviderType.SYSTEM.value,
 -                 Provider.quota_type == ProviderQuotaType.TRIAL.value,
 -                 Provider.quota_limit != new_quota_limit
 -             ).order_by(Provider.created_at.desc()).paginate(page=page, per_page=100)
 -         except NotFound:
 -             break
 - 
 -         page += 1
 -         for provider in providers:
 -             try:
 -                 click.echo('Syncing tenant anthropic hosted provider: {}, origin: limit {}, used {}'
 -                            .format(provider.tenant_id, provider.quota_limit, provider.quota_used))
 -                 original_quota_limit = provider.quota_limit
 -                 division = math.ceil(new_quota_limit / 1000)
 - 
 -                 provider.quota_limit = new_quota_limit if original_quota_limit == 1000 \
 -                     else original_quota_limit * division
 -                 provider.quota_used = division * provider.quota_used
 -                 db.session.commit()
 - 
 -                 count += 1
 -             except Exception as e:
 -                 click.echo(click.style(
 -                     'Sync tenant anthropic hosted provider error: {} {}'.format(e.__class__.__name__, str(e)),
 -                     fg='red'))
 -                 continue
 - 
 -     click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
 - 
 - 
 - @click.command('create-qdrant-indexes', help='Create qdrant indexes.')
 - def create_qdrant_indexes():
 -     click.echo(click.style('Start create qdrant indexes.', fg='green'))
 -     create_count = 0
 - 
 -     page = 1
 -     while True:
 -         try:
 -             datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
 -                 .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
 -         except NotFound:
 -             break
 - 
 -         page += 1
 -         for dataset in datasets:
 -             if dataset.index_struct_dict:
 -                 if dataset.index_struct_dict['type'] != 'qdrant':
 -                     try:
 -                         click.echo('Create dataset qdrant index: {}'.format(dataset.id))
 -                         try:
 -                             embedding_model = ModelFactory.get_embedding_model(
 -                                 tenant_id=dataset.tenant_id,
 -                                 model_provider_name=dataset.embedding_model_provider,
 -                                 model_name=dataset.embedding_model
 -                             )
 -                         except Exception:
 -                             try:
 -                                 embedding_model = ModelFactory.get_embedding_model(
 -                                     tenant_id=dataset.tenant_id
 -                                 )
 -                                 dataset.embedding_model = embedding_model.name
 -                                 dataset.embedding_model_provider = embedding_model.model_provider.provider_name
 -                             except Exception:
 -                                 provider = Provider(
 -                                     id='provider_id',
 -                                     tenant_id=dataset.tenant_id,
 -                                     provider_name='openai',
 -                                     provider_type=ProviderType.SYSTEM.value,
 -                                     encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
 -                                     is_valid=True,
 -                                 )
 -                                 model_provider = OpenAIProvider(provider=provider)
 -                                 embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
 -                                                                   model_provider=model_provider)
 -                         embeddings = CacheEmbedding(embedding_model)
 - 
 -                         from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
 - 
 -                         index = QdrantVectorIndex(
 -                             dataset=dataset,
 -                             config=QdrantConfig(
 -                                 endpoint=current_app.config.get('QDRANT_URL'),
 -                                 api_key=current_app.config.get('QDRANT_API_KEY'),
 -                                 root_path=current_app.root_path
 -                             ),
 -                             embeddings=embeddings
 -                         )
 -                         if index:
 -                             index.create_qdrant_dataset(dataset)
 -                             index_struct = {
 -                                 "type": 'qdrant',
 -                                 "vector_store": {
 -                                     "class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}
 -                             }
 -                             dataset.index_struct = json.dumps(index_struct)
 -                             db.session.commit()
 -                             create_count += 1
 -                         else:
 -                             click.echo('passed.')
 -                     except Exception as e:
 -                         click.echo(
 -                             click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
 -                                         fg='red'))
 -                         continue
 - 
 -     click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
 - 
 - 
 - @click.command('update-qdrant-indexes', help='Update qdrant indexes.')
 - def update_qdrant_indexes():
 -     click.echo(click.style('Start Update qdrant indexes.', fg='green'))
 -     create_count = 0
 - 
 -     page = 1
 -     while True:
 -         try:
 -             datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
 -                 .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
 -         except NotFound:
 -             break
 - 
 -         page += 1
 -         for dataset in datasets:
 -             if dataset.index_struct_dict:
 -                 if dataset.index_struct_dict['type'] != 'qdrant':
 -                     try:
 -                         click.echo('Update dataset qdrant index: {}'.format(dataset.id))
 -                         try:
 -                             embedding_model = ModelFactory.get_embedding_model(
 -                                 tenant_id=dataset.tenant_id,
 -                                 model_provider_name=dataset.embedding_model_provider,
 -                                 model_name=dataset.embedding_model
 -                             )
 -                         except Exception:
 -                             provider = Provider(
 -                                 id='provider_id',
 -                                 tenant_id=dataset.tenant_id,
 -                                 provider_name='openai',
 -                                 provider_type=ProviderType.CUSTOM.value,
 -                                 encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
 -                                 is_valid=True,
 -                             )
 -                             model_provider = OpenAIProvider(provider=provider)
 -                             embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
 -                                                               model_provider=model_provider)
 -                         embeddings = CacheEmbedding(embedding_model)
 - 
 -                         from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
 - 
 -                         index = QdrantVectorIndex(
 -                             dataset=dataset,
 -                             config=QdrantConfig(
 -                                 endpoint=current_app.config.get('QDRANT_URL'),
 -                                 api_key=current_app.config.get('QDRANT_API_KEY'),
 -                                 root_path=current_app.root_path
 -                             ),
 -                             embeddings=embeddings
 -                         )
 -                         if index:
 -                             index.update_qdrant_dataset(dataset)
 -                             create_count += 1
 -                         else:
 -                             click.echo('passed.')
 -                     except Exception as e:
 -                         click.echo(
 -                             click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
 -                                         fg='red'))
 -                         continue
 - 
 -     click.echo(click.style('Congratulations! Update {} dataset indexes.'.format(create_count), fg='green'))
 - 
 - 
 - @click.command('normalization-collections', help='restore all collections in one')
 - def normalization_collections():
 -     click.echo(click.style('Start normalization collections.', fg='green'))
 -     normalization_count = 0
 - 
 -     page = 1
 -     while True:
 -         try:
 -             datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
 -                 .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
 -         except NotFound:
 -             break
 - 
 -         page += 1
 -         for dataset in datasets:
 -             if not dataset.collection_binding_id:
 -                 try:
 -                     click.echo('restore dataset index: {}'.format(dataset.id))
 -                     try:
 -                         embedding_model = ModelFactory.get_embedding_model(
 -                             tenant_id=dataset.tenant_id,
 -                             model_provider_name=dataset.embedding_model_provider,
 -                             model_name=dataset.embedding_model
 -                         )
 -                     except Exception:
 -                         provider = Provider(
 -                             id='provider_id',
 -                             tenant_id=dataset.tenant_id,
 -                             provider_name='openai',
 -                             provider_type=ProviderType.CUSTOM.value,
 -                             encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
 -                             is_valid=True,
 -                         )
 -                         model_provider = OpenAIProvider(provider=provider)
 -                         embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
 -                                                           model_provider=model_provider)
 -                     embeddings = CacheEmbedding(embedding_model)
 -                     dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
 -                         filter(DatasetCollectionBinding.provider_name == embedding_model.model_provider.provider_name,
 -                                DatasetCollectionBinding.model_name == embedding_model.name). \
 -                         order_by(DatasetCollectionBinding.created_at). \
 -                         first()
 - 
 -                     if not dataset_collection_binding:
 -                         dataset_collection_binding = DatasetCollectionBinding(
 -                             provider_name=embedding_model.model_provider.provider_name,
 -                             model_name=embedding_model.name,
 -                             collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node'
 -                         )
 -                         db.session.add(dataset_collection_binding)
 -                         db.session.commit()
 - 
 -                     from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
 - 
 -                     index = QdrantVectorIndex(
 -                         dataset=dataset,
 -                         config=QdrantConfig(
 -                             endpoint=current_app.config.get('QDRANT_URL'),
 -                             api_key=current_app.config.get('QDRANT_API_KEY'),
 -                             root_path=current_app.root_path
 -                         ),
 -                         embeddings=embeddings
 -                     )
 -                     if index:
 -                         index.restore_dataset_in_one(dataset, dataset_collection_binding)
 -                     else:
 -                         click.echo('passed.')
 - 
 -                     original_index = QdrantVectorIndex(
 -                         dataset=dataset,
 -                         config=QdrantConfig(
 -                             endpoint=current_app.config.get('QDRANT_URL'),
 -                             api_key=current_app.config.get('QDRANT_API_KEY'),
 -                             root_path=current_app.root_path
 -                         ),
 -                         embeddings=embeddings
 -                     )
 -                     if original_index:
 -                         original_index.delete_original_collection(dataset, dataset_collection_binding)
 -                         normalization_count += 1
 -                     else:
 -                         click.echo('passed.')
 -                 except Exception as e:
 -                     click.echo(
 -                         click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
 -                                     fg='red'))
 -                     continue
 - 
 -     click.echo(click.style('Congratulations! restore {} dataset indexes.'.format(normalization_count), fg='green'))
 - 
 - 
 - @click.command('update_app_model_configs', help='Migrate data to support paragraph variable.')
 - @click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
 - def update_app_model_configs(batch_size):
 -     pre_prompt_template = '{{default_input}}'
 -     user_input_form_template = {
 -         "en-US": [
 -             {
 -                 "paragraph": {
 -                     "label": "Query",
 -                     "variable": "default_input",
 -                     "required": False,
 -                     "default": ""
 -                 }
 -             }
 -         ],
 -         "zh-Hans": [
 -             {
 -                 "paragraph": {
 -                     "label": "查询内容",
 -                     "variable": "default_input",
 -                     "required": False,
 -                     "default": ""
 -                 }
 -             }
 -         ]
 -     }
 - 
 -     click.secho("Start migrate old data that the text generator can support paragraph variable.", fg='green')
 - 
 -     total_records = db.session.query(AppModelConfig) \
 -         .join(App, App.app_model_config_id == AppModelConfig.id) \
 -         .filter(App.mode == 'completion') \
 -         .count()
 - 
 -     if total_records == 0:
 -         click.secho("No data to migrate.", fg='green')
 -         return
 - 
 -     num_batches = (total_records + batch_size - 1) // batch_size
 - 
 -     with tqdm(total=total_records, desc="Migrating Data") as pbar:
 -         for i in range(num_batches):
 -             offset = i * batch_size
 -             limit = min(batch_size, total_records - offset)
 - 
 -             click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
 - 
 -             data_batch = db.session.query(AppModelConfig) \
 -                 .join(App, App.app_model_config_id == AppModelConfig.id) \
 -                 .filter(App.mode == 'completion') \
 -                 .order_by(App.created_at) \
 -                 .offset(offset).limit(limit).all()
 - 
 -             if not data_batch:
 -                 click.secho("No more data to migrate.", fg='green')
 -                 break
 - 
 -             try:
 -                 click.secho(f"Migrating {len(data_batch)} records...", fg='green')
 -                 for data in data_batch:
 -                     # click.secho(f"Migrating data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
 - 
 -                     if data.pre_prompt is None:
 -                         data.pre_prompt = pre_prompt_template
 -                     else:
 -                         if pre_prompt_template in data.pre_prompt:
 -                             continue
 -                         data.pre_prompt += pre_prompt_template
 - 
 -                     app_data = db.session.query(App) \
 -                         .filter(App.id == data.app_id) \
 -                         .one()
 - 
 -                     account_data = db.session.query(Account) \
 -                         .join(TenantAccountJoin, Account.id == TenantAccountJoin.account_id) \
 -                         .filter(TenantAccountJoin.role == 'owner') \
 -                         .filter(TenantAccountJoin.tenant_id == app_data.tenant_id) \
 -                         .one_or_none()
 - 
 -                     if not account_data:
 -                         continue
 - 
 -                     if data.user_input_form is None or data.user_input_form == 'null':
 -                         data.user_input_form = json.dumps(user_input_form_template[account_data.interface_language])
 -                     else:
 -                         raw_json_data = json.loads(data.user_input_form)
 -                         raw_json_data.append(user_input_form_template[account_data.interface_language][0])
 -                         data.user_input_form = json.dumps(raw_json_data)
 - 
 -                     # click.secho(f"Updated data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
 - 
 -                 db.session.commit()
 - 
 -             except Exception as e:
 -                 click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
 -                             fg='red')
 -                 continue
 - 
 -             click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
 - 
 -             pbar.update(len(data_batch))
 - 
 - 
 - def register_commands(app):
 -     app.cli.add_command(reset_password)
 -     app.cli.add_command(reset_email)
 -     app.cli.add_command(generate_invitation_codes)
 -     app.cli.add_command(reset_encrypt_key_pair)
 -     app.cli.add_command(recreate_all_dataset_indexes)
 -     app.cli.add_command(sync_anthropic_hosted_providers)
 -     app.cli.add_command(clean_unused_dataset_indexes)
 -     app.cli.add_command(create_qdrant_indexes)
 -     app.cli.add_command(update_qdrant_indexes)
 -     app.cli.add_command(update_app_model_configs)
 -     app.cli.add_command(normalization_collections)
 
 
  |