- import json
 - import logging
 - from collections.abc import Generator
 - from copy import deepcopy
 - from typing import Any, Optional, Union
 - 
 - from core.agent.base_agent_runner import BaseAgentRunner
 - from core.app.apps.base_app_queue_manager import PublishFrom
 - from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
 - from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
 - from core.model_runtime.entities.message_entities import (
 -     AssistantPromptMessage,
 -     PromptMessage,
 -     PromptMessageContentType,
 -     SystemPromptMessage,
 -     TextPromptMessageContent,
 -     ToolPromptMessage,
 -     UserPromptMessage,
 - )
 - from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
 - from core.tools.entities.tool_entities import ToolInvokeMeta
 - from core.tools.tool_engine import ToolEngine
 - from models.model import Message
 - 
 - logger = logging.getLogger(__name__)
 - 
 - 
 - class FunctionCallAgentRunner(BaseAgentRunner):
 -     def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
 -         """
 -         Run FunctionCall agent application
 -         """
 -         self.query = query
 -         app_generate_entity = self.application_generate_entity
 - 
 -         app_config = self.app_config
 - 
 -         # convert tools into ModelRuntime Tool format
 -         tool_instances, prompt_messages_tools = self._init_prompt_tools()
 - 
 -         iteration_step = 1
 -         max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
 - 
 -         # continue to run until there is not any tool call
 -         function_call_state = True
 -         llm_usage = {"usage": None}
 -         final_answer = ""
 - 
 -         # get tracing instance
 -         trace_manager = app_generate_entity.trace_manager
 - 
 -         def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
 -             if not final_llm_usage_dict["usage"]:
 -                 final_llm_usage_dict["usage"] = usage
 -             else:
 -                 llm_usage = final_llm_usage_dict["usage"]
 -                 llm_usage.prompt_tokens += usage.prompt_tokens
 -                 llm_usage.completion_tokens += usage.completion_tokens
 -                 llm_usage.prompt_price += usage.prompt_price
 -                 llm_usage.completion_price += usage.completion_price
 -                 llm_usage.total_price += usage.total_price
 - 
 -         model_instance = self.model_instance
 - 
 -         while function_call_state and iteration_step <= max_iteration_steps:
 -             function_call_state = False
 - 
 -             if iteration_step == max_iteration_steps:
 -                 # the last iteration, remove all tools
 -                 prompt_messages_tools = []
 - 
 -             message_file_ids = []
 -             agent_thought = self.create_agent_thought(
 -                 message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
 -             )
 - 
 -             # recalc llm max tokens
 -             prompt_messages = self._organize_prompt_messages()
 -             self.recalc_llm_max_tokens(self.model_config, prompt_messages)
 -             # invoke model
 -             chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
 -                 prompt_messages=prompt_messages,
 -                 model_parameters=app_generate_entity.model_conf.parameters,
 -                 tools=prompt_messages_tools,
 -                 stop=app_generate_entity.model_conf.stop,
 -                 stream=self.stream_tool_call,
 -                 user=self.user_id,
 -                 callbacks=[],
 -             )
 - 
 -             tool_calls: list[tuple[str, str, dict[str, Any]]] = []
 - 
 -             # save full response
 -             response = ""
 - 
 -             # save tool call names and inputs
 -             tool_call_names = ""
 -             tool_call_inputs = ""
 - 
 -             current_llm_usage = None
 - 
 -             if self.stream_tool_call:
 -                 is_first_chunk = True
 -                 for chunk in chunks:
 -                     if is_first_chunk:
 -                         self.queue_manager.publish(
 -                             QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 -                         )
 -                         is_first_chunk = False
 -                     # check if there is any tool call
 -                     if self.check_tool_calls(chunk):
 -                         function_call_state = True
 -                         tool_calls.extend(self.extract_tool_calls(chunk))
 -                         tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
 -                         try:
 -                             tool_call_inputs = json.dumps(
 -                                 {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
 -                             )
 -                         except json.JSONDecodeError as e:
 -                             # ensure ascii to avoid encoding error
 -                             tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
 - 
 -                     if chunk.delta.message and chunk.delta.message.content:
 -                         if isinstance(chunk.delta.message.content, list):
 -                             for content in chunk.delta.message.content:
 -                                 response += content.data
 -                         else:
 -                             response += chunk.delta.message.content
 - 
 -                     if chunk.delta.usage:
 -                         increase_usage(llm_usage, chunk.delta.usage)
 -                         current_llm_usage = chunk.delta.usage
 - 
 -                     yield chunk
 -             else:
 -                 result: LLMResult = chunks
 -                 # check if there is any tool call
 -                 if self.check_blocking_tool_calls(result):
 -                     function_call_state = True
 -                     tool_calls.extend(self.extract_blocking_tool_calls(result))
 -                     tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
 -                     try:
 -                         tool_call_inputs = json.dumps(
 -                             {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
 -                         )
 -                     except json.JSONDecodeError as e:
 -                         # ensure ascii to avoid encoding error
 -                         tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
 - 
 -                 if result.usage:
 -                     increase_usage(llm_usage, result.usage)
 -                     current_llm_usage = result.usage
 - 
 -                 if result.message and result.message.content:
 -                     if isinstance(result.message.content, list):
 -                         for content in result.message.content:
 -                             response += content.data
 -                     else:
 -                         response += result.message.content
 - 
 -                 if not result.message.content:
 -                     result.message.content = ""
 - 
 -                 self.queue_manager.publish(
 -                     QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 -                 )
 - 
 -                 yield LLMResultChunk(
 -                     model=model_instance.model,
 -                     prompt_messages=result.prompt_messages,
 -                     system_fingerprint=result.system_fingerprint,
 -                     delta=LLMResultChunkDelta(
 -                         index=0,
 -                         message=result.message,
 -                         usage=result.usage,
 -                     ),
 -                 )
 - 
 -             assistant_message = AssistantPromptMessage(content="", tool_calls=[])
 -             if tool_calls:
 -                 assistant_message.tool_calls = [
 -                     AssistantPromptMessage.ToolCall(
 -                         id=tool_call[0],
 -                         type="function",
 -                         function=AssistantPromptMessage.ToolCall.ToolCallFunction(
 -                             name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
 -                         ),
 -                     )
 -                     for tool_call in tool_calls
 -                 ]
 -             else:
 -                 assistant_message.content = response
 - 
 -             self._current_thoughts.append(assistant_message)
 - 
 -             # save thought
 -             self.save_agent_thought(
 -                 agent_thought=agent_thought,
 -                 tool_name=tool_call_names,
 -                 tool_input=tool_call_inputs,
 -                 thought=response,
 -                 tool_invoke_meta=None,
 -                 observation=None,
 -                 answer=response,
 -                 messages_ids=[],
 -                 llm_usage=current_llm_usage,
 -             )
 -             self.queue_manager.publish(
 -                 QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 -             )
 - 
 -             final_answer += response + "\n"
 - 
 -             # call tools
 -             tool_responses = []
 -             for tool_call_id, tool_call_name, tool_call_args in tool_calls:
 -                 tool_instance = tool_instances.get(tool_call_name)
 -                 if not tool_instance:
 -                     tool_response = {
 -                         "tool_call_id": tool_call_id,
 -                         "tool_call_name": tool_call_name,
 -                         "tool_response": f"there is not a tool named {tool_call_name}",
 -                         "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
 -                     }
 -                 else:
 -                     # invoke tool
 -                     tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
 -                         tool=tool_instance,
 -                         tool_parameters=tool_call_args,
 -                         user_id=self.user_id,
 -                         tenant_id=self.tenant_id,
 -                         message=self.message,
 -                         invoke_from=self.application_generate_entity.invoke_from,
 -                         agent_tool_callback=self.agent_callback,
 -                         trace_manager=trace_manager,
 -                     )
 -                     # publish files
 -                     for message_file_id, save_as in message_files:
 -                         if save_as:
 -                             self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as)
 - 
 -                         # publish message file
 -                         self.queue_manager.publish(
 -                             QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
 -                         )
 -                         # add message file ids
 -                         message_file_ids.append(message_file_id)
 - 
 -                     tool_response = {
 -                         "tool_call_id": tool_call_id,
 -                         "tool_call_name": tool_call_name,
 -                         "tool_response": tool_invoke_response,
 -                         "meta": tool_invoke_meta.to_dict(),
 -                     }
 - 
 -                 tool_responses.append(tool_response)
 -                 if tool_response["tool_response"] is not None:
 -                     self._current_thoughts.append(
 -                         ToolPromptMessage(
 -                             content=tool_response["tool_response"],
 -                             tool_call_id=tool_call_id,
 -                             name=tool_call_name,
 -                         )
 -                     )
 - 
 -             if len(tool_responses) > 0:
 -                 # save agent thought
 -                 self.save_agent_thought(
 -                     agent_thought=agent_thought,
 -                     tool_name=None,
 -                     tool_input=None,
 -                     thought=None,
 -                     tool_invoke_meta={
 -                         tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
 -                     },
 -                     observation={
 -                         tool_response["tool_call_name"]: tool_response["tool_response"]
 -                         for tool_response in tool_responses
 -                     },
 -                     answer=None,
 -                     messages_ids=message_file_ids,
 -                 )
 -                 self.queue_manager.publish(
 -                     QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 -                 )
 - 
 -             # update prompt tool
 -             for prompt_tool in prompt_messages_tools:
 -                 self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
 - 
 -             iteration_step += 1
 - 
 -         self.update_db_variables(self.variables_pool, self.db_variables_pool)
 -         # publish end event
 -         self.queue_manager.publish(
 -             QueueMessageEndEvent(
 -                 llm_result=LLMResult(
 -                     model=model_instance.model,
 -                     prompt_messages=prompt_messages,
 -                     message=AssistantPromptMessage(content=final_answer),
 -                     usage=llm_usage["usage"] or LLMUsage.empty_usage(),
 -                     system_fingerprint="",
 -                 )
 -             ),
 -             PublishFrom.APPLICATION_MANAGER,
 -         )
 - 
 -     def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
 -         """
 -         Check if there is any tool call in llm result chunk
 -         """
 -         if llm_result_chunk.delta.message.tool_calls:
 -             return True
 -         return False
 - 
 -     def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
 -         """
 -         Check if there is any blocking tool call in llm result
 -         """
 -         if llm_result.message.tool_calls:
 -             return True
 -         return False
 - 
 -     def extract_tool_calls(
 -         self, llm_result_chunk: LLMResultChunk
 -     ) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
 -         """
 -         Extract tool calls from llm result chunk
 - 
 -         Returns:
 -             List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
 -         """
 -         tool_calls = []
 -         for prompt_message in llm_result_chunk.delta.message.tool_calls:
 -             args = {}
 -             if prompt_message.function.arguments != "":
 -                 args = json.loads(prompt_message.function.arguments)
 - 
 -             tool_calls.append(
 -                 (
 -                     prompt_message.id,
 -                     prompt_message.function.name,
 -                     args,
 -                 )
 -             )
 - 
 -         return tool_calls
 - 
 -     def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
 -         """
 -         Extract blocking tool calls from llm result
 - 
 -         Returns:
 -             List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
 -         """
 -         tool_calls = []
 -         for prompt_message in llm_result.message.tool_calls:
 -             args = {}
 -             if prompt_message.function.arguments != "":
 -                 args = json.loads(prompt_message.function.arguments)
 - 
 -             tool_calls.append(
 -                 (
 -                     prompt_message.id,
 -                     prompt_message.function.name,
 -                     args,
 -                 )
 -             )
 - 
 -         return tool_calls
 - 
 -     def _init_system_message(
 -         self, prompt_template: str, prompt_messages: Optional[list[PromptMessage]] = None
 -     ) -> list[PromptMessage]:
 -         """
 -         Initialize system message
 -         """
 -         if not prompt_messages and prompt_template:
 -             return [
 -                 SystemPromptMessage(content=prompt_template),
 -             ]
 - 
 -         if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
 -             prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
 - 
 -         return prompt_messages
 - 
 -     def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 -         """
 -         Organize user query
 -         """
 -         if self.files:
 -             prompt_message_contents = [TextPromptMessageContent(data=query)]
 -             for file_obj in self.files:
 -                 prompt_message_contents.append(file_obj.prompt_message_content)
 - 
 -             prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
 -         else:
 -             prompt_messages.append(UserPromptMessage(content=query))
 - 
 -         return prompt_messages
 - 
 -     def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 -         """
 -         As for now, gpt supports both fc and vision at the first iteration.
 -         We need to remove the image messages from the prompt messages at the first iteration.
 -         """
 -         prompt_messages = deepcopy(prompt_messages)
 - 
 -         for prompt_message in prompt_messages:
 -             if isinstance(prompt_message, UserPromptMessage):
 -                 if isinstance(prompt_message.content, list):
 -                     prompt_message.content = "\n".join(
 -                         [
 -                             content.data
 -                             if content.type == PromptMessageContentType.TEXT
 -                             else "[image]"
 -                             if content.type == PromptMessageContentType.IMAGE
 -                             else "[file]"
 -                             for content in prompt_message.content
 -                         ]
 -                     )
 - 
 -         return prompt_messages
 - 
 -     def _organize_prompt_messages(self):
 -         prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
 -         self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
 -         query_prompt_messages = self._organize_user_query(self.query, [])
 - 
 -         self.history_prompt_messages = AgentHistoryPromptTransform(
 -             model_config=self.model_config,
 -             prompt_messages=[*query_prompt_messages, *self._current_thoughts],
 -             history_messages=self.history_prompt_messages,
 -             memory=self.memory,
 -         ).get_prompt()
 - 
 -         prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
 -         if len(self._current_thoughts) != 0:
 -             # clear messages after the first iteration
 -             prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
 -         return prompt_messages
 
 
  |