|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 |
- # Dify Backend API
-
- ## Usage
-
- 1. Start the docker-compose stack
-
- The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using `docker-compose`.
-
- ```bash
- cd ../docker
- docker-compose -f docker-compose.middleware.yaml -p dify up -d
- cd ../api
- ```
- 2. Copy `.env.example` to `.env`
- 3. Generate a `SECRET_KEY` in the `.env` file.
-
- ```bash
- sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
- ```
- 3.5 If you use Anaconda, create a new environment and activate it
- ```bash
- conda create --name dify python=3.10
- conda activate dify
- ```
- 4. Install dependencies
- ```bash
- pip install -r requirements.txt
- ```
- 5. Run migrate
-
- Before the first launch, migrate the database to the latest version.
-
- ```bash
- flask db upgrade
- ```
-
- ⚠️ If you encounter problems with jieba, for example
-
- ```
- > flask db upgrade
- Error: While importing 'app', an ImportError was raised:
- ```
-
- Please run the following command instead.
-
- ```
- pip install -r requirements.txt --upgrade --force-reinstall
- ```
-
- 6. Start backend:
- ```bash
- flask run --host 0.0.0.0 --port=5001 --debug
- ```
- 7. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...
- 8. If you need to debug local async processing, you can run `celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail`, celery can do dataset importing and other async tasks.
|