Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

clean_document_task.py 3.5KB

2 anos atrás
2 anos atrás
2 anos atrás
2 anos atrás
2 anos atrás
2 anos atrás
2 anos atrás
2 anos atrás
2 anos atrás
2 anos atrás
2 anos atrás
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. import logging
  2. import time
  3. import click
  4. from celery import shared_task
  5. from sqlalchemy import select
  6. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  7. from core.tools.utils.web_reader_tool import get_image_upload_file_ids
  8. from extensions.ext_database import db
  9. from extensions.ext_storage import storage
  10. from models.dataset import Dataset, DatasetMetadataBinding, DocumentSegment
  11. from models.model import UploadFile
  12. logger = logging.getLogger(__name__)
  13. @shared_task(queue="dataset")
  14. def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_id: str | None):
  15. """
  16. Clean document when document deleted.
  17. :param document_id: document id
  18. :param dataset_id: dataset id
  19. :param doc_form: doc_form
  20. :param file_id: file id
  21. Usage: clean_document_task.delay(document_id, dataset_id)
  22. """
  23. logger.info(click.style(f"Start clean document when document deleted: {document_id}", fg="green"))
  24. start_at = time.perf_counter()
  25. try:
  26. dataset = db.session.query(Dataset).where(Dataset.id == dataset_id).first()
  27. if not dataset:
  28. raise Exception("Document has no dataset")
  29. segments = db.session.scalars(select(DocumentSegment).where(DocumentSegment.document_id == document_id)).all()
  30. # check segment is exist
  31. if segments:
  32. index_node_ids = [segment.index_node_id for segment in segments]
  33. index_processor = IndexProcessorFactory(doc_form).init_index_processor()
  34. index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
  35. for segment in segments:
  36. image_upload_file_ids = get_image_upload_file_ids(segment.content)
  37. for upload_file_id in image_upload_file_ids:
  38. image_file = db.session.query(UploadFile).where(UploadFile.id == upload_file_id).first()
  39. if image_file is None:
  40. continue
  41. try:
  42. storage.delete(image_file.key)
  43. except Exception:
  44. logger.exception(
  45. "Delete image_files failed when storage deleted, \
  46. image_upload_file_is: %s",
  47. upload_file_id,
  48. )
  49. db.session.delete(image_file)
  50. db.session.delete(segment)
  51. db.session.commit()
  52. if file_id:
  53. file = db.session.query(UploadFile).where(UploadFile.id == file_id).first()
  54. if file:
  55. try:
  56. storage.delete(file.key)
  57. except Exception:
  58. logger.exception("Delete file failed when document deleted, file_id: %s", file_id)
  59. db.session.delete(file)
  60. db.session.commit()
  61. # delete dataset metadata binding
  62. db.session.query(DatasetMetadataBinding).where(
  63. DatasetMetadataBinding.dataset_id == dataset_id,
  64. DatasetMetadataBinding.document_id == document_id,
  65. ).delete()
  66. db.session.commit()
  67. end_at = time.perf_counter()
  68. logger.info(
  69. click.style(
  70. f"Cleaned document when document deleted: {document_id} latency: {end_at - start_at}",
  71. fg="green",
  72. )
  73. )
  74. except Exception:
  75. logger.exception("Cleaned document when document deleted failed")
  76. finally:
  77. db.session.close()