You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

deal_dataset_vector_index_task.py 8.4KB

преди 2 години
преди 2 години
преди 2 години
преди 2 години
преди 2 години
преди 2 години
преди 2 години
преди 2 години
преди 10 месеца
преди 2 години
преди 10 месеца
преди 2 години
преди 2 години
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. import logging
  2. import time
  3. from typing import Literal
  4. import click
  5. from celery import shared_task
  6. from sqlalchemy import select
  7. from core.rag.index_processor.constant.index_type import IndexType
  8. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  9. from core.rag.models.document import ChildDocument, Document
  10. from extensions.ext_database import db
  11. from models.dataset import Dataset, DocumentSegment
  12. from models.dataset import Document as DatasetDocument
  13. logger = logging.getLogger(__name__)
  14. @shared_task(queue="dataset")
  15. def deal_dataset_vector_index_task(dataset_id: str, action: Literal["remove", "add", "update"]):
  16. """
  17. Async deal dataset from index
  18. :param dataset_id: dataset_id
  19. :param action: action
  20. Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
  21. """
  22. logger.info(click.style(f"Start deal dataset vector index: {dataset_id}", fg="green"))
  23. start_at = time.perf_counter()
  24. try:
  25. dataset = db.session.query(Dataset).filter_by(id=dataset_id).first()
  26. if not dataset:
  27. raise Exception("Dataset not found")
  28. index_type = dataset.doc_form or IndexType.PARAGRAPH_INDEX
  29. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  30. if action == "remove":
  31. index_processor.clean(dataset, None, with_keywords=False)
  32. elif action == "add":
  33. dataset_documents = db.session.scalars(
  34. select(DatasetDocument).where(
  35. DatasetDocument.dataset_id == dataset_id,
  36. DatasetDocument.indexing_status == "completed",
  37. DatasetDocument.enabled == True,
  38. DatasetDocument.archived == False,
  39. )
  40. ).all()
  41. if dataset_documents:
  42. dataset_documents_ids = [doc.id for doc in dataset_documents]
  43. db.session.query(DatasetDocument).where(DatasetDocument.id.in_(dataset_documents_ids)).update(
  44. {"indexing_status": "indexing"}, synchronize_session=False
  45. )
  46. db.session.commit()
  47. for dataset_document in dataset_documents:
  48. try:
  49. # add from vector index
  50. segments = (
  51. db.session.query(DocumentSegment)
  52. .where(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
  53. .order_by(DocumentSegment.position.asc())
  54. .all()
  55. )
  56. if segments:
  57. documents = []
  58. for segment in segments:
  59. document = Document(
  60. page_content=segment.content,
  61. metadata={
  62. "doc_id": segment.index_node_id,
  63. "doc_hash": segment.index_node_hash,
  64. "document_id": segment.document_id,
  65. "dataset_id": segment.dataset_id,
  66. },
  67. )
  68. documents.append(document)
  69. # save vector index
  70. index_processor.load(dataset, documents, with_keywords=False)
  71. db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
  72. {"indexing_status": "completed"}, synchronize_session=False
  73. )
  74. db.session.commit()
  75. except Exception as e:
  76. db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
  77. {"indexing_status": "error", "error": str(e)}, synchronize_session=False
  78. )
  79. db.session.commit()
  80. elif action == "update":
  81. dataset_documents = db.session.scalars(
  82. select(DatasetDocument).where(
  83. DatasetDocument.dataset_id == dataset_id,
  84. DatasetDocument.indexing_status == "completed",
  85. DatasetDocument.enabled == True,
  86. DatasetDocument.archived == False,
  87. )
  88. ).all()
  89. # add new index
  90. if dataset_documents:
  91. # update document status
  92. dataset_documents_ids = [doc.id for doc in dataset_documents]
  93. db.session.query(DatasetDocument).where(DatasetDocument.id.in_(dataset_documents_ids)).update(
  94. {"indexing_status": "indexing"}, synchronize_session=False
  95. )
  96. db.session.commit()
  97. # clean index
  98. index_processor.clean(dataset, None, with_keywords=False, delete_child_chunks=False)
  99. for dataset_document in dataset_documents:
  100. # update from vector index
  101. try:
  102. segments = (
  103. db.session.query(DocumentSegment)
  104. .where(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
  105. .order_by(DocumentSegment.position.asc())
  106. .all()
  107. )
  108. if segments:
  109. documents = []
  110. for segment in segments:
  111. document = Document(
  112. page_content=segment.content,
  113. metadata={
  114. "doc_id": segment.index_node_id,
  115. "doc_hash": segment.index_node_hash,
  116. "document_id": segment.document_id,
  117. "dataset_id": segment.dataset_id,
  118. },
  119. )
  120. if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
  121. child_chunks = segment.get_child_chunks()
  122. if child_chunks:
  123. child_documents = []
  124. for child_chunk in child_chunks:
  125. child_document = ChildDocument(
  126. page_content=child_chunk.content,
  127. metadata={
  128. "doc_id": child_chunk.index_node_id,
  129. "doc_hash": child_chunk.index_node_hash,
  130. "document_id": segment.document_id,
  131. "dataset_id": segment.dataset_id,
  132. },
  133. )
  134. child_documents.append(child_document)
  135. document.children = child_documents
  136. documents.append(document)
  137. # save vector index
  138. index_processor.load(dataset, documents, with_keywords=False)
  139. db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
  140. {"indexing_status": "completed"}, synchronize_session=False
  141. )
  142. db.session.commit()
  143. except Exception as e:
  144. db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
  145. {"indexing_status": "error", "error": str(e)}, synchronize_session=False
  146. )
  147. db.session.commit()
  148. else:
  149. # clean collection
  150. index_processor.clean(dataset, None, with_keywords=False, delete_child_chunks=False)
  151. end_at = time.perf_counter()
  152. logger.info(click.style(f"Deal dataset vector index: {dataset_id} latency: {end_at - start_at}", fg="green"))
  153. except Exception:
  154. logger.exception("Deal dataset vector index failed")
  155. finally:
  156. db.session.close()