您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

deal_dataset_vector_index_task.py 8.4KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. import logging
  2. import time
  3. from typing import Literal
  4. import click
  5. from celery import shared_task # type: ignore
  6. from core.rag.index_processor.constant.index_type import IndexType
  7. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  8. from core.rag.models.document import ChildDocument, Document
  9. from extensions.ext_database import db
  10. from models.dataset import Dataset, DocumentSegment
  11. from models.dataset import Document as DatasetDocument
  12. @shared_task(queue="dataset")
  13. def deal_dataset_vector_index_task(dataset_id: str, action: Literal["remove", "add", "update"]):
  14. """
  15. Async deal dataset from index
  16. :param dataset_id: dataset_id
  17. :param action: action
  18. Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
  19. """
  20. logging.info(click.style(f"Start deal dataset vector index: {dataset_id}", fg="green"))
  21. start_at = time.perf_counter()
  22. try:
  23. dataset = db.session.query(Dataset).filter_by(id=dataset_id).first()
  24. if not dataset:
  25. raise Exception("Dataset not found")
  26. index_type = dataset.doc_form or IndexType.PARAGRAPH_INDEX
  27. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  28. if action == "remove":
  29. index_processor.clean(dataset, None, with_keywords=False)
  30. elif action == "add":
  31. dataset_documents = (
  32. db.session.query(DatasetDocument)
  33. .where(
  34. DatasetDocument.dataset_id == dataset_id,
  35. DatasetDocument.indexing_status == "completed",
  36. DatasetDocument.enabled == True,
  37. DatasetDocument.archived == False,
  38. )
  39. .all()
  40. )
  41. if dataset_documents:
  42. dataset_documents_ids = [doc.id for doc in dataset_documents]
  43. db.session.query(DatasetDocument).where(DatasetDocument.id.in_(dataset_documents_ids)).update(
  44. {"indexing_status": "indexing"}, synchronize_session=False
  45. )
  46. db.session.commit()
  47. for dataset_document in dataset_documents:
  48. try:
  49. # add from vector index
  50. segments = (
  51. db.session.query(DocumentSegment)
  52. .where(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
  53. .order_by(DocumentSegment.position.asc())
  54. .all()
  55. )
  56. if segments:
  57. documents = []
  58. for segment in segments:
  59. document = Document(
  60. page_content=segment.content,
  61. metadata={
  62. "doc_id": segment.index_node_id,
  63. "doc_hash": segment.index_node_hash,
  64. "document_id": segment.document_id,
  65. "dataset_id": segment.dataset_id,
  66. },
  67. )
  68. documents.append(document)
  69. # save vector index
  70. index_processor.load(dataset, documents, with_keywords=False)
  71. db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
  72. {"indexing_status": "completed"}, synchronize_session=False
  73. )
  74. db.session.commit()
  75. except Exception as e:
  76. db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
  77. {"indexing_status": "error", "error": str(e)}, synchronize_session=False
  78. )
  79. db.session.commit()
  80. elif action == "update":
  81. dataset_documents = (
  82. db.session.query(DatasetDocument)
  83. .where(
  84. DatasetDocument.dataset_id == dataset_id,
  85. DatasetDocument.indexing_status == "completed",
  86. DatasetDocument.enabled == True,
  87. DatasetDocument.archived == False,
  88. )
  89. .all()
  90. )
  91. # add new index
  92. if dataset_documents:
  93. # update document status
  94. dataset_documents_ids = [doc.id for doc in dataset_documents]
  95. db.session.query(DatasetDocument).where(DatasetDocument.id.in_(dataset_documents_ids)).update(
  96. {"indexing_status": "indexing"}, synchronize_session=False
  97. )
  98. db.session.commit()
  99. # clean index
  100. index_processor.clean(dataset, None, with_keywords=False, delete_child_chunks=False)
  101. for dataset_document in dataset_documents:
  102. # update from vector index
  103. try:
  104. segments = (
  105. db.session.query(DocumentSegment)
  106. .where(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
  107. .order_by(DocumentSegment.position.asc())
  108. .all()
  109. )
  110. if segments:
  111. documents = []
  112. for segment in segments:
  113. document = Document(
  114. page_content=segment.content,
  115. metadata={
  116. "doc_id": segment.index_node_id,
  117. "doc_hash": segment.index_node_hash,
  118. "document_id": segment.document_id,
  119. "dataset_id": segment.dataset_id,
  120. },
  121. )
  122. if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
  123. child_chunks = segment.get_child_chunks()
  124. if child_chunks:
  125. child_documents = []
  126. for child_chunk in child_chunks:
  127. child_document = ChildDocument(
  128. page_content=child_chunk.content,
  129. metadata={
  130. "doc_id": child_chunk.index_node_id,
  131. "doc_hash": child_chunk.index_node_hash,
  132. "document_id": segment.document_id,
  133. "dataset_id": segment.dataset_id,
  134. },
  135. )
  136. child_documents.append(child_document)
  137. document.children = child_documents
  138. documents.append(document)
  139. # save vector index
  140. index_processor.load(dataset, documents, with_keywords=False)
  141. db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
  142. {"indexing_status": "completed"}, synchronize_session=False
  143. )
  144. db.session.commit()
  145. except Exception as e:
  146. db.session.query(DatasetDocument).where(DatasetDocument.id == dataset_document.id).update(
  147. {"indexing_status": "error", "error": str(e)}, synchronize_session=False
  148. )
  149. db.session.commit()
  150. else:
  151. # clean collection
  152. index_processor.clean(dataset, None, with_keywords=False, delete_child_chunks=False)
  153. end_at = time.perf_counter()
  154. logging.info(click.style(f"Deal dataset vector index: {dataset_id} latency: {end_at - start_at}", fg="green"))
  155. except Exception:
  156. logging.exception("Deal dataset vector index failed")
  157. finally:
  158. db.session.close()