- import datetime
 - import logging
 - import time
 - import uuid
 - 
 - import click
 - from celery import shared_task
 - from sqlalchemy import func
 - 
 - from core.indexing_runner import IndexingRunner
 - from core.model_manager import ModelManager
 - from core.model_runtime.entities.model_entities import ModelType
 - from extensions.ext_database import db
 - from extensions.ext_redis import redis_client
 - from libs import helper
 - from models.dataset import Dataset, Document, DocumentSegment
 - 
 - 
 - @shared_task(queue='dataset')
 - def batch_create_segment_to_index_task(job_id: str, content: list, dataset_id: str, document_id: str,
 -                                        tenant_id: str, user_id: str):
 -     """
 -     Async batch create segment to index
 -     :param job_id:
 -     :param content:
 -     :param dataset_id:
 -     :param document_id:
 -     :param tenant_id:
 -     :param user_id:
 - 
 -     Usage: batch_create_segment_to_index_task.delay(segment_id)
 -     """
 -     logging.info(click.style('Start batch create segment jobId: {}'.format(job_id), fg='green'))
 -     start_at = time.perf_counter()
 - 
 -     indexing_cache_key = 'segment_batch_import_{}'.format(job_id)
 - 
 -     try:
 -         dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise ValueError('Dataset not exist.')
 - 
 -         dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
 -         if not dataset_document:
 -             raise ValueError('Document not exist.')
 - 
 -         if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
 -             raise ValueError('Document is not available.')
 -         document_segments = []
 -         embedding_model = None
 -         if dataset.indexing_technique == 'high_quality':
 -             model_manager = ModelManager()
 -             embedding_model = model_manager.get_model_instance(
 -                 tenant_id=dataset.tenant_id,
 -                 provider=dataset.embedding_model_provider,
 -                 model_type=ModelType.TEXT_EMBEDDING,
 -                 model=dataset.embedding_model
 -             )
 - 
 -         for segment in content:
 -             content = segment['content']
 -             doc_id = str(uuid.uuid4())
 -             segment_hash = helper.generate_text_hash(content)
 -             # calc embedding use tokens
 -             tokens = embedding_model.get_text_embedding_num_tokens(
 -                 texts=[content]
 -             ) if embedding_model else 0
 -             max_position = db.session.query(func.max(DocumentSegment.position)).filter(
 -                 DocumentSegment.document_id == dataset_document.id
 -             ).scalar()
 -             segment_document = DocumentSegment(
 -                 tenant_id=tenant_id,
 -                 dataset_id=dataset_id,
 -                 document_id=document_id,
 -                 index_node_id=doc_id,
 -                 index_node_hash=segment_hash,
 -                 position=max_position + 1 if max_position else 1,
 -                 content=content,
 -                 word_count=len(content),
 -                 tokens=tokens,
 -                 created_by=user_id,
 -                 indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 -                 status='completed',
 -                 completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -             )
 -             if dataset_document.doc_form == 'qa_model':
 -                 segment_document.answer = segment['answer']
 -             db.session.add(segment_document)
 -             document_segments.append(segment_document)
 -         # add index to db
 -         indexing_runner = IndexingRunner()
 -         indexing_runner.batch_add_segments(document_segments, dataset)
 -         db.session.commit()
 -         redis_client.setex(indexing_cache_key, 600, 'completed')
 -         end_at = time.perf_counter()
 -         logging.info(click.style('Segment batch created job: {} latency: {}'.format(job_id, end_at - start_at), fg='green'))
 -     except Exception as e:
 -         logging.exception("Segments batch created index failed:{}".format(str(e)))
 -         redis_client.setex(indexing_cache_key, 600, 'error')
 
 
  |