- import datetime
 - import json
 - import logging
 - import random
 - import time
 - import uuid
 - from typing import Optional
 - 
 - from flask_login import current_user
 - from sqlalchemy import func
 - 
 - from configs import dify_config
 - from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
 - from core.model_manager import ModelManager
 - from core.model_runtime.entities.model_entities import ModelType
 - from core.rag.datasource.keyword.keyword_factory import Keyword
 - from core.rag.models.document import Document as RAGDocument
 - from core.rag.retrieval.retrival_methods import RetrievalMethod
 - from events.dataset_event import dataset_was_deleted
 - from events.document_event import document_was_deleted
 - from extensions.ext_database import db
 - from extensions.ext_redis import redis_client
 - from libs import helper
 - from models.account import Account, TenantAccountRole
 - from models.dataset import (
 -     AppDatasetJoin,
 -     Dataset,
 -     DatasetCollectionBinding,
 -     DatasetPermission,
 -     DatasetProcessRule,
 -     DatasetQuery,
 -     Document,
 -     DocumentSegment,
 - )
 - from models.model import UploadFile
 - from models.source import DataSourceOauthBinding
 - from services.errors.account import NoPermissionError
 - from services.errors.dataset import DatasetNameDuplicateError
 - from services.errors.document import DocumentIndexingError
 - from services.errors.file import FileNotExistsError
 - from services.feature_service import FeatureModel, FeatureService
 - from services.tag_service import TagService
 - from services.vector_service import VectorService
 - from tasks.clean_notion_document_task import clean_notion_document_task
 - from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
 - from tasks.delete_segment_from_index_task import delete_segment_from_index_task
 - from tasks.disable_segment_from_index_task import disable_segment_from_index_task
 - from tasks.document_indexing_task import document_indexing_task
 - from tasks.document_indexing_update_task import document_indexing_update_task
 - from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
 - from tasks.recover_document_indexing_task import recover_document_indexing_task
 - from tasks.retry_document_indexing_task import retry_document_indexing_task
 - from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
 - 
 - 
 - class DatasetService:
 - 
 -     @staticmethod
 -     def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
 -         query = Dataset.query.filter(Dataset.provider == provider, Dataset.tenant_id == tenant_id).order_by(
 -             Dataset.created_at.desc()
 -         )
 - 
 -         if user:
 -             # get permitted dataset ids
 -             dataset_permission = DatasetPermission.query.filter_by(
 -                 account_id=user.id,
 -                 tenant_id=tenant_id
 -             ).all()
 -             permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
 - 
 -             if user.current_role == TenantAccountRole.DATASET_OPERATOR:
 -                 # only show datasets that the user has permission to access
 -                 if permitted_dataset_ids:
 -                     query = query.filter(Dataset.id.in_(permitted_dataset_ids))
 -                 else:
 -                     return [], 0
 -             else:
 -                 # show all datasets that the user has permission to access
 -                 if permitted_dataset_ids:
 -                     query = query.filter(
 -                         db.or_(
 -                             Dataset.permission == 'all_team_members',
 -                             db.and_(Dataset.permission == 'only_me', Dataset.created_by == user.id),
 -                             db.and_(Dataset.permission == 'partial_members', Dataset.id.in_(permitted_dataset_ids))
 -                         )
 -                     )
 -                 else:
 -                     query = query.filter(
 -                         db.or_(
 -                             Dataset.permission == 'all_team_members',
 -                             db.and_(Dataset.permission == 'only_me', Dataset.created_by == user.id)
 -                         )
 -                     )
 -         else:
 -             # if no user, only show datasets that are shared with all team members
 -             query = query.filter(Dataset.permission == 'all_team_members')
 - 
 -         if search:
 -             query = query.filter(Dataset.name.ilike(f'%{search}%'))
 - 
 -         if tag_ids:
 -             target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
 -             if target_ids:
 -                 query = query.filter(Dataset.id.in_(target_ids))
 -             else:
 -                 return [], 0
 - 
 -         datasets = query.paginate(
 -             page=page,
 -             per_page=per_page,
 -             max_per_page=100,
 -             error_out=False
 -         )
 - 
 -         return datasets.items, datasets.total
 - 
 -     @staticmethod
 -     def get_process_rules(dataset_id):
 -         # get the latest process rule
 -         dataset_process_rule = db.session.query(DatasetProcessRule). \
 -             filter(DatasetProcessRule.dataset_id == dataset_id). \
 -             order_by(DatasetProcessRule.created_at.desc()). \
 -             limit(1). \
 -             one_or_none()
 -         if dataset_process_rule:
 -             mode = dataset_process_rule.mode
 -             rules = dataset_process_rule.rules_dict
 -         else:
 -             mode = DocumentService.DEFAULT_RULES['mode']
 -             rules = DocumentService.DEFAULT_RULES['rules']
 -         return {
 -             'mode': mode,
 -             'rules': rules
 -         }
 - 
 -     @staticmethod
 -     def get_datasets_by_ids(ids, tenant_id):
 -         datasets = Dataset.query.filter(
 -             Dataset.id.in_(ids),
 -             Dataset.tenant_id == tenant_id
 -         ).paginate(
 -             page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
 -         )
 -         return datasets.items, datasets.total
 - 
 -     @staticmethod
 -     def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
 -         # check if dataset name already exists
 -         if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
 -             raise DatasetNameDuplicateError(
 -                 f'Dataset with name {name} already exists.'
 -             )
 -         embedding_model = None
 -         if indexing_technique == 'high_quality':
 -             model_manager = ModelManager()
 -             embedding_model = model_manager.get_default_model_instance(
 -                 tenant_id=tenant_id,
 -                 model_type=ModelType.TEXT_EMBEDDING
 -             )
 -         dataset = Dataset(name=name, indexing_technique=indexing_technique)
 -         # dataset = Dataset(name=name, provider=provider, config=config)
 -         dataset.created_by = account.id
 -         dataset.updated_by = account.id
 -         dataset.tenant_id = tenant_id
 -         dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
 -         dataset.embedding_model = embedding_model.model if embedding_model else None
 -         db.session.add(dataset)
 -         db.session.commit()
 -         return dataset
 - 
 -     @staticmethod
 -     def get_dataset(dataset_id):
 -         return Dataset.query.filter_by(
 -             id=dataset_id
 -         ).first()
 - 
 -     @staticmethod
 -     def check_dataset_model_setting(dataset):
 -         if dataset.indexing_technique == 'high_quality':
 -             try:
 -                 model_manager = ModelManager()
 -                 model_manager.get_model_instance(
 -                     tenant_id=dataset.tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model
 -                 )
 -             except LLMBadRequestError:
 -                 raise ValueError(
 -                     "No Embedding Model available. Please configure a valid provider "
 -                     "in the Settings -> Model Provider."
 -                 )
 -             except ProviderTokenNotInitError as ex:
 -                 raise ValueError(
 -                     f"The dataset in unavailable, due to: "
 -                     f"{ex.description}"
 -                 )
 - 
 -     @staticmethod
 -     def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model:str):
 -         try:
 -             model_manager = ModelManager()
 -             model_manager.get_model_instance(
 -                 tenant_id=tenant_id,
 -                 provider=embedding_model_provider,
 -                 model_type=ModelType.TEXT_EMBEDDING,
 -                 model=embedding_model
 -             )
 -         except LLMBadRequestError:
 -             raise ValueError(
 -                 "No Embedding Model available. Please configure a valid provider "
 -                 "in the Settings -> Model Provider."
 -             )
 -         except ProviderTokenNotInitError as ex:
 -             raise ValueError(
 -                 f"The dataset in unavailable, due to: "
 -                 f"{ex.description}"
 -             )
 - 
 - 
 -     @staticmethod
 -     def update_dataset(dataset_id, data, user):
 -         data.pop('partial_member_list', None)
 -         filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
 -         dataset = DatasetService.get_dataset(dataset_id)
 -         DatasetService.check_dataset_permission(dataset, user)
 -         action = None
 -         if dataset.indexing_technique != data['indexing_technique']:
 -             # if update indexing_technique
 -             if data['indexing_technique'] == 'economy':
 -                 action = 'remove'
 -                 filtered_data['embedding_model'] = None
 -                 filtered_data['embedding_model_provider'] = None
 -                 filtered_data['collection_binding_id'] = None
 -             elif data['indexing_technique'] == 'high_quality':
 -                 action = 'add'
 -                 # get embedding model setting
 -                 try:
 -                     model_manager = ModelManager()
 -                     embedding_model = model_manager.get_model_instance(
 -                         tenant_id=current_user.current_tenant_id,
 -                         provider=data['embedding_model_provider'],
 -                         model_type=ModelType.TEXT_EMBEDDING,
 -                         model=data['embedding_model']
 -                     )
 -                     filtered_data['embedding_model'] = embedding_model.model
 -                     filtered_data['embedding_model_provider'] = embedding_model.provider
 -                     dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 -                         embedding_model.provider,
 -                         embedding_model.model
 -                     )
 -                     filtered_data['collection_binding_id'] = dataset_collection_binding.id
 -                 except LLMBadRequestError:
 -                     raise ValueError(
 -                         "No Embedding Model available. Please configure a valid provider "
 -                         "in the Settings -> Model Provider."
 -                     )
 -                 except ProviderTokenNotInitError as ex:
 -                     raise ValueError(ex.description)
 -         else:
 -             if data['embedding_model_provider'] != dataset.embedding_model_provider or \
 -                 data['embedding_model'] != dataset.embedding_model:
 -                 action = 'update'
 -                 try:
 -                     model_manager = ModelManager()
 -                     embedding_model = model_manager.get_model_instance(
 -                         tenant_id=current_user.current_tenant_id,
 -                         provider=data['embedding_model_provider'],
 -                         model_type=ModelType.TEXT_EMBEDDING,
 -                         model=data['embedding_model']
 -                     )
 -                     filtered_data['embedding_model'] = embedding_model.model
 -                     filtered_data['embedding_model_provider'] = embedding_model.provider
 -                     dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 -                         embedding_model.provider,
 -                         embedding_model.model
 -                     )
 -                     filtered_data['collection_binding_id'] = dataset_collection_binding.id
 -                 except LLMBadRequestError:
 -                     raise ValueError(
 -                         "No Embedding Model available. Please configure a valid provider "
 -                         "in the Settings -> Model Provider."
 -                     )
 -                 except ProviderTokenNotInitError as ex:
 -                     raise ValueError(ex.description)
 - 
 -         filtered_data['updated_by'] = user.id
 -         filtered_data['updated_at'] = datetime.datetime.now()
 - 
 -         # update Retrieval model
 -         filtered_data['retrieval_model'] = data['retrieval_model']
 - 
 -         dataset.query.filter_by(id=dataset_id).update(filtered_data)
 - 
 -         db.session.commit()
 -         if action:
 -             deal_dataset_vector_index_task.delay(dataset_id, action)
 -         return dataset
 - 
 -     @staticmethod
 -     def delete_dataset(dataset_id, user):
 - 
 -         dataset = DatasetService.get_dataset(dataset_id)
 - 
 -         if dataset is None:
 -             return False
 - 
 -         DatasetService.check_dataset_permission(dataset, user)
 - 
 -         dataset_was_deleted.send(dataset)
 - 
 -         db.session.delete(dataset)
 -         db.session.commit()
 -         return True
 - 
 -     @staticmethod
 -     def dataset_use_check(dataset_id) -> bool:
 -         count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
 -         if count > 0:
 -             return True
 -         return False
 - 
 -     @staticmethod
 -     def check_dataset_permission(dataset, user):
 -         if dataset.tenant_id != user.current_tenant_id:
 -             logging.debug(
 -                 f'User {user.id} does not have permission to access dataset {dataset.id}'
 -             )
 -             raise NoPermissionError(
 -                 'You do not have permission to access this dataset.'
 -             )
 -         if dataset.permission == 'only_me' and dataset.created_by != user.id:
 -             logging.debug(
 -                 f'User {user.id} does not have permission to access dataset {dataset.id}'
 -             )
 -             raise NoPermissionError(
 -                 'You do not have permission to access this dataset.'
 -             )
 -         if dataset.permission == 'partial_members':
 -             user_permission = DatasetPermission.query.filter_by(
 -                 dataset_id=dataset.id, account_id=user.id
 -             ).first()
 -             if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id:
 -                 logging.debug(
 -                     f'User {user.id} does not have permission to access dataset {dataset.id}'
 -                 )
 -                 raise NoPermissionError(
 -                     'You do not have permission to access this dataset.'
 -                 )
 - 
 -     @staticmethod
 -     def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None):
 -         if dataset.permission == 'only_me':
 -             if dataset.created_by != user.id:
 -                 raise NoPermissionError('You do not have permission to access this dataset.')
 - 
 -         elif dataset.permission == 'partial_members':
 -             if not any(
 -                 dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
 -             ):
 -                 raise NoPermissionError('You do not have permission to access this dataset.')
 - 
 -     @staticmethod
 -     def get_dataset_queries(dataset_id: str, page: int, per_page: int):
 -         dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
 -             .order_by(db.desc(DatasetQuery.created_at)) \
 -             .paginate(
 -             page=page, per_page=per_page, max_per_page=100, error_out=False
 -         )
 -         return dataset_queries.items, dataset_queries.total
 - 
 -     @staticmethod
 -     def get_related_apps(dataset_id: str):
 -         return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
 -             .order_by(db.desc(AppDatasetJoin.created_at)).all()
 - 
 - 
 - class DocumentService:
 -     DEFAULT_RULES = {
 -         'mode': 'custom',
 -         'rules': {
 -             'pre_processing_rules': [
 -                 {'id': 'remove_extra_spaces', 'enabled': True},
 -                 {'id': 'remove_urls_emails', 'enabled': False}
 -             ],
 -             'segmentation': {
 -                 'delimiter': '\n',
 -                 'max_tokens': 500,
 -                 'chunk_overlap': 50
 -             }
 -         }
 -     }
 - 
 -     DOCUMENT_METADATA_SCHEMA = {
 -         "book": {
 -             "title": str,
 -             "language": str,
 -             "author": str,
 -             "publisher": str,
 -             "publication_date": str,
 -             "isbn": str,
 -             "category": str,
 -         },
 -         "web_page": {
 -             "title": str,
 -             "url": str,
 -             "language": str,
 -             "publish_date": str,
 -             "author/publisher": str,
 -             "topic/keywords": str,
 -             "description": str,
 -         },
 -         "paper": {
 -             "title": str,
 -             "language": str,
 -             "author": str,
 -             "publish_date": str,
 -             "journal/conference_name": str,
 -             "volume/issue/page_numbers": str,
 -             "doi": str,
 -             "topic/keywords": str,
 -             "abstract": str,
 -         },
 -         "social_media_post": {
 -             "platform": str,
 -             "author/username": str,
 -             "publish_date": str,
 -             "post_url": str,
 -             "topic/tags": str,
 -         },
 -         "wikipedia_entry": {
 -             "title": str,
 -             "language": str,
 -             "web_page_url": str,
 -             "last_edit_date": str,
 -             "editor/contributor": str,
 -             "summary/introduction": str,
 -         },
 -         "personal_document": {
 -             "title": str,
 -             "author": str,
 -             "creation_date": str,
 -             "last_modified_date": str,
 -             "document_type": str,
 -             "tags/category": str,
 -         },
 -         "business_document": {
 -             "title": str,
 -             "author": str,
 -             "creation_date": str,
 -             "last_modified_date": str,
 -             "document_type": str,
 -             "department/team": str,
 -         },
 -         "im_chat_log": {
 -             "chat_platform": str,
 -             "chat_participants/group_name": str,
 -             "start_date": str,
 -             "end_date": str,
 -             "summary": str,
 -         },
 -         "synced_from_notion": {
 -             "title": str,
 -             "language": str,
 -             "author/creator": str,
 -             "creation_date": str,
 -             "last_modified_date": str,
 -             "notion_page_link": str,
 -             "category/tags": str,
 -             "description": str,
 -         },
 -         "synced_from_github": {
 -             "repository_name": str,
 -             "repository_description": str,
 -             "repository_owner/organization": str,
 -             "code_filename": str,
 -             "code_file_path": str,
 -             "programming_language": str,
 -             "github_link": str,
 -             "open_source_license": str,
 -             "commit_date": str,
 -             "commit_author": str,
 -         },
 -         "others": dict
 -     }
 - 
 -     @staticmethod
 -     def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
 -         document = db.session.query(Document).filter(
 -             Document.id == document_id,
 -             Document.dataset_id == dataset_id
 -         ).first()
 - 
 -         return document
 - 
 -     @staticmethod
 -     def get_document_by_id(document_id: str) -> Optional[Document]:
 -         document = db.session.query(Document).filter(
 -             Document.id == document_id
 -         ).first()
 - 
 -         return document
 - 
 -     @staticmethod
 -     def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
 -         documents = db.session.query(Document).filter(
 -             Document.dataset_id == dataset_id,
 -             Document.enabled == True
 -         ).all()
 - 
 -         return documents
 - 
 -     @staticmethod
 -     def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
 -         documents = db.session.query(Document).filter(
 -             Document.dataset_id == dataset_id,
 -             Document.indexing_status.in_(['error', 'paused'])
 -         ).all()
 -         return documents
 - 
 -     @staticmethod
 -     def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
 -         documents = db.session.query(Document).filter(
 -             Document.batch == batch,
 -             Document.dataset_id == dataset_id,
 -             Document.tenant_id == current_user.current_tenant_id
 -         ).all()
 - 
 -         return documents
 - 
 -     @staticmethod
 -     def get_document_file_detail(file_id: str):
 -         file_detail = db.session.query(UploadFile). \
 -             filter(UploadFile.id == file_id). \
 -             one_or_none()
 -         return file_detail
 - 
 -     @staticmethod
 -     def check_archived(document):
 -         if document.archived:
 -             return True
 -         else:
 -             return False
 - 
 -     @staticmethod
 -     def delete_document(document):
 -         # trigger document_was_deleted signal
 -         file_id = None
 -         if document.data_source_type == 'upload_file':
 -             if document.data_source_info:
 -                 data_source_info = document.data_source_info_dict
 -                 if data_source_info and 'upload_file_id' in data_source_info:
 -                     file_id = data_source_info['upload_file_id']
 -         document_was_deleted.send(document.id, dataset_id=document.dataset_id,
 -                                   doc_form=document.doc_form, file_id=file_id)
 - 
 -         db.session.delete(document)
 -         db.session.commit()
 - 
 -     @staticmethod
 -     def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
 -         dataset = DatasetService.get_dataset(dataset_id)
 -         if not dataset:
 -             raise ValueError('Dataset not found.')
 - 
 -         document = DocumentService.get_document(dataset_id, document_id)
 - 
 -         if not document:
 -             raise ValueError('Document not found.')
 - 
 -         if document.tenant_id != current_user.current_tenant_id:
 -             raise ValueError('No permission.')
 - 
 -         document.name = name
 - 
 -         db.session.add(document)
 -         db.session.commit()
 - 
 -         return document
 - 
 -     @staticmethod
 -     def pause_document(document):
 -         if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
 -             raise DocumentIndexingError()
 -         # update document to be paused
 -         document.is_paused = True
 -         document.paused_by = current_user.id
 -         document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 - 
 -         db.session.add(document)
 -         db.session.commit()
 -         # set document paused flag
 -         indexing_cache_key = 'document_{}_is_paused'.format(document.id)
 -         redis_client.setnx(indexing_cache_key, "True")
 - 
 -     @staticmethod
 -     def recover_document(document):
 -         if not document.is_paused:
 -             raise DocumentIndexingError()
 -         # update document to be recover
 -         document.is_paused = False
 -         document.paused_by = None
 -         document.paused_at = None
 - 
 -         db.session.add(document)
 -         db.session.commit()
 -         # delete paused flag
 -         indexing_cache_key = 'document_{}_is_paused'.format(document.id)
 -         redis_client.delete(indexing_cache_key)
 -         # trigger async task
 -         recover_document_indexing_task.delay(document.dataset_id, document.id)
 - 
 -     @staticmethod
 -     def retry_document(dataset_id: str, documents: list[Document]):
 -         for document in documents:
 -             # add retry flag
 -             retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
 -             cache_result = redis_client.get(retry_indexing_cache_key)
 -             if cache_result is not None:
 -                 raise ValueError("Document is being retried, please try again later")
 -             # retry document indexing
 -             document.indexing_status = 'waiting'
 -             db.session.add(document)
 -             db.session.commit()
 - 
 -             redis_client.setex(retry_indexing_cache_key, 600, 1)
 -         # trigger async task
 -         document_ids = [document.id for document in documents]
 -         retry_document_indexing_task.delay(dataset_id, document_ids)
 - 
 -     @staticmethod
 -     def sync_website_document(dataset_id: str, document: Document):
 -         # add sync flag
 -         sync_indexing_cache_key = 'document_{}_is_sync'.format(document.id)
 -         cache_result = redis_client.get(sync_indexing_cache_key)
 -         if cache_result is not None:
 -             raise ValueError("Document is being synced, please try again later")
 -         # sync document indexing
 -         document.indexing_status = 'waiting'
 -         data_source_info = document.data_source_info_dict
 -         data_source_info['mode'] = 'scrape'
 -         document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
 -         db.session.add(document)
 -         db.session.commit()
 - 
 -         redis_client.setex(sync_indexing_cache_key, 600, 1)
 - 
 -         sync_website_document_indexing_task.delay(dataset_id, document.id)
 - 
 -     @staticmethod
 -     def get_documents_position(dataset_id):
 -         document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
 -         if document:
 -             return document.position + 1
 -         else:
 -             return 1
 - 
 -     @staticmethod
 -     def save_document_with_dataset_id(
 -         dataset: Dataset, document_data: dict,
 -         account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
 -         created_from: str = 'web'
 -     ):
 - 
 -         # check document limit
 -         features = FeatureService.get_features(current_user.current_tenant_id)
 - 
 -         if features.billing.enabled:
 -             if 'original_document_id' not in document_data or not document_data['original_document_id']:
 -                 count = 0
 -                 if document_data["data_source"]["type"] == "upload_file":
 -                     upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 -                     count = len(upload_file_list)
 -                 elif document_data["data_source"]["type"] == "notion_import":
 -                     notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 -                     for notion_info in notion_info_list:
 -                         count = count + len(notion_info['pages'])
 -                 elif document_data["data_source"]["type"] == "website_crawl":
 -                     website_info = document_data["data_source"]['info_list']['website_info_list']
 -                     count = len(website_info['urls'])
 -                 batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
 -                 if count > batch_upload_limit:
 -                     raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 - 
 -                 DocumentService.check_documents_upload_quota(count, features)
 - 
 -         # if dataset is empty, update dataset data_source_type
 -         if not dataset.data_source_type:
 -             dataset.data_source_type = document_data["data_source"]["type"]
 - 
 -         if not dataset.indexing_technique:
 -             if 'indexing_technique' not in document_data \
 -                 or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
 -                 raise ValueError("Indexing technique is required")
 - 
 -             dataset.indexing_technique = document_data["indexing_technique"]
 -             if document_data["indexing_technique"] == 'high_quality':
 -                 model_manager = ModelManager()
 -                 embedding_model = model_manager.get_default_model_instance(
 -                     tenant_id=current_user.current_tenant_id,
 -                     model_type=ModelType.TEXT_EMBEDDING
 -                 )
 -                 dataset.embedding_model = embedding_model.model
 -                 dataset.embedding_model_provider = embedding_model.provider
 -                 dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 -                     embedding_model.provider,
 -                     embedding_model.model
 -                 )
 -                 dataset.collection_binding_id = dataset_collection_binding.id
 -                 if not dataset.retrieval_model:
 -                     default_retrieval_model = {
 -                         'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
 -                         'reranking_enable': False,
 -                         'reranking_model': {
 -                             'reranking_provider_name': '',
 -                             'reranking_model_name': ''
 -                         },
 -                         'top_k': 2,
 -                         'score_threshold_enabled': False
 -                     }
 - 
 -                     dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
 -                         'retrieval_model'
 -                     ) else default_retrieval_model
 - 
 -         documents = []
 -         batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
 -         if document_data.get("original_document_id"):
 -             document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
 -             documents.append(document)
 -         else:
 -             # save process rule
 -             if not dataset_process_rule:
 -                 process_rule = document_data["process_rule"]
 -                 if process_rule["mode"] == "custom":
 -                     dataset_process_rule = DatasetProcessRule(
 -                         dataset_id=dataset.id,
 -                         mode=process_rule["mode"],
 -                         rules=json.dumps(process_rule["rules"]),
 -                         created_by=account.id
 -                     )
 -                 elif process_rule["mode"] == "automatic":
 -                     dataset_process_rule = DatasetProcessRule(
 -                         dataset_id=dataset.id,
 -                         mode=process_rule["mode"],
 -                         rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 -                         created_by=account.id
 -                     )
 -                 db.session.add(dataset_process_rule)
 -                 db.session.commit()
 -             position = DocumentService.get_documents_position(dataset.id)
 -             document_ids = []
 -             duplicate_document_ids = []
 -             if document_data["data_source"]["type"] == "upload_file":
 -                 upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 -                 for file_id in upload_file_list:
 -                     file = db.session.query(UploadFile).filter(
 -                         UploadFile.tenant_id == dataset.tenant_id,
 -                         UploadFile.id == file_id
 -                     ).first()
 - 
 -                     # raise error if file not found
 -                     if not file:
 -                         raise FileNotExistsError()
 - 
 -                     file_name = file.name
 -                     data_source_info = {
 -                         "upload_file_id": file_id,
 -                     }
 -                     # check duplicate
 -                     if document_data.get('duplicate', False):
 -                         document = Document.query.filter_by(
 -                             dataset_id=dataset.id,
 -                             tenant_id=current_user.current_tenant_id,
 -                             data_source_type='upload_file',
 -                             enabled=True,
 -                             name=file_name
 -                         ).first()
 -                         if document:
 -                             document.dataset_process_rule_id = dataset_process_rule.id
 -                             document.updated_at = datetime.datetime.utcnow()
 -                             document.created_from = created_from
 -                             document.doc_form = document_data['doc_form']
 -                             document.doc_language = document_data['doc_language']
 -                             document.data_source_info = json.dumps(data_source_info)
 -                             document.batch = batch
 -                             document.indexing_status = 'waiting'
 -                             db.session.add(document)
 -                             documents.append(document)
 -                             duplicate_document_ids.append(document.id)
 -                             continue
 -                     document = DocumentService.build_document(
 -                         dataset, dataset_process_rule.id,
 -                         document_data["data_source"]["type"],
 -                         document_data["doc_form"],
 -                         document_data["doc_language"],
 -                         data_source_info, created_from, position,
 -                         account, file_name, batch
 -                     )
 -                     db.session.add(document)
 -                     db.session.flush()
 -                     document_ids.append(document.id)
 -                     documents.append(document)
 -                     position += 1
 -             elif document_data["data_source"]["type"] == "notion_import":
 -                 notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 -                 exist_page_ids = []
 -                 exist_document = {}
 -                 documents = Document.query.filter_by(
 -                     dataset_id=dataset.id,
 -                     tenant_id=current_user.current_tenant_id,
 -                     data_source_type='notion_import',
 -                     enabled=True
 -                 ).all()
 -                 if documents:
 -                     for document in documents:
 -                         data_source_info = json.loads(document.data_source_info)
 -                         exist_page_ids.append(data_source_info['notion_page_id'])
 -                         exist_document[data_source_info['notion_page_id']] = document.id
 -                 for notion_info in notion_info_list:
 -                     workspace_id = notion_info['workspace_id']
 -                     data_source_binding = DataSourceOauthBinding.query.filter(
 -                         db.and_(
 -                             DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
 -                             DataSourceOauthBinding.provider == 'notion',
 -                             DataSourceOauthBinding.disabled == False,
 -                             DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 -                         )
 -                     ).first()
 -                     if not data_source_binding:
 -                         raise ValueError('Data source binding not found.')
 -                     for page in notion_info['pages']:
 -                         if page['page_id'] not in exist_page_ids:
 -                             data_source_info = {
 -                                 "notion_workspace_id": workspace_id,
 -                                 "notion_page_id": page['page_id'],
 -                                 "notion_page_icon": page['page_icon'],
 -                                 "type": page['type']
 -                             }
 -                             document = DocumentService.build_document(
 -                                 dataset, dataset_process_rule.id,
 -                                 document_data["data_source"]["type"],
 -                                 document_data["doc_form"],
 -                                 document_data["doc_language"],
 -                                 data_source_info, created_from, position,
 -                                 account, page['page_name'], batch
 -                             )
 -                             db.session.add(document)
 -                             db.session.flush()
 -                             document_ids.append(document.id)
 -                             documents.append(document)
 -                             position += 1
 -                         else:
 -                             exist_document.pop(page['page_id'])
 -                 # delete not selected documents
 -                 if len(exist_document) > 0:
 -                     clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
 -             elif document_data["data_source"]["type"] == "website_crawl":
 -                 website_info = document_data["data_source"]['info_list']['website_info_list']
 -                 urls = website_info['urls']
 -                 for url in urls:
 -                     data_source_info = {
 -                         'url': url,
 -                         'provider': website_info['provider'],
 -                         'job_id': website_info['job_id'],
 -                         'only_main_content': website_info.get('only_main_content', False),
 -                         'mode': 'crawl',
 -                     }
 -                     if len(url) > 255:
 -                         document_name = url[:200] + '...'
 -                     else:
 -                         document_name = url
 -                     document = DocumentService.build_document(
 -                         dataset, dataset_process_rule.id,
 -                         document_data["data_source"]["type"],
 -                         document_data["doc_form"],
 -                         document_data["doc_language"],
 -                         data_source_info, created_from, position,
 -                         account, document_name, batch
 -                     )
 -                     db.session.add(document)
 -                     db.session.flush()
 -                     document_ids.append(document.id)
 -                     documents.append(document)
 -                     position += 1
 -             db.session.commit()
 - 
 -             # trigger async task
 -             if document_ids:
 -                 document_indexing_task.delay(dataset.id, document_ids)
 -             if duplicate_document_ids:
 -                 duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
 - 
 -         return documents, batch
 - 
 -     @staticmethod
 -     def check_documents_upload_quota(count: int, features: FeatureModel):
 -         can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
 -         if count > can_upload_size:
 -             raise ValueError(
 -                 f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.'
 -             )
 - 
 -     @staticmethod
 -     def build_document(
 -         dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
 -         document_language: str, data_source_info: dict, created_from: str, position: int,
 -         account: Account,
 -         name: str, batch: str
 -     ):
 -         document = Document(
 -             tenant_id=dataset.tenant_id,
 -             dataset_id=dataset.id,
 -             position=position,
 -             data_source_type=data_source_type,
 -             data_source_info=json.dumps(data_source_info),
 -             dataset_process_rule_id=process_rule_id,
 -             batch=batch,
 -             name=name,
 -             created_from=created_from,
 -             created_by=account.id,
 -             doc_form=document_form,
 -             doc_language=document_language
 -         )
 -         return document
 - 
 -     @staticmethod
 -     def get_tenant_documents_count():
 -         documents_count = Document.query.filter(
 -             Document.completed_at.isnot(None),
 -             Document.enabled == True,
 -             Document.archived == False,
 -             Document.tenant_id == current_user.current_tenant_id
 -         ).count()
 -         return documents_count
 - 
 -     @staticmethod
 -     def update_document_with_dataset_id(
 -         dataset: Dataset, document_data: dict,
 -         account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
 -         created_from: str = 'web'
 -     ):
 -         DatasetService.check_dataset_model_setting(dataset)
 -         document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
 -         if document.display_status != 'available':
 -             raise ValueError("Document is not available")
 -         # update document name
 -         if document_data.get('name'):
 -             document.name = document_data['name']
 -         # save process rule
 -         if document_data.get('process_rule'):
 -             process_rule = document_data["process_rule"]
 -             if process_rule["mode"] == "custom":
 -                 dataset_process_rule = DatasetProcessRule(
 -                     dataset_id=dataset.id,
 -                     mode=process_rule["mode"],
 -                     rules=json.dumps(process_rule["rules"]),
 -                     created_by=account.id
 -                 )
 -             elif process_rule["mode"] == "automatic":
 -                 dataset_process_rule = DatasetProcessRule(
 -                     dataset_id=dataset.id,
 -                     mode=process_rule["mode"],
 -                     rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 -                     created_by=account.id
 -                 )
 -             db.session.add(dataset_process_rule)
 -             db.session.commit()
 -             document.dataset_process_rule_id = dataset_process_rule.id
 -         # update document data source
 -         if document_data.get('data_source'):
 -             file_name = ''
 -             data_source_info = {}
 -             if document_data["data_source"]["type"] == "upload_file":
 -                 upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 -                 for file_id in upload_file_list:
 -                     file = db.session.query(UploadFile).filter(
 -                         UploadFile.tenant_id == dataset.tenant_id,
 -                         UploadFile.id == file_id
 -                     ).first()
 - 
 -                     # raise error if file not found
 -                     if not file:
 -                         raise FileNotExistsError()
 - 
 -                     file_name = file.name
 -                     data_source_info = {
 -                         "upload_file_id": file_id,
 -                     }
 -             elif document_data["data_source"]["type"] == "notion_import":
 -                 notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 -                 for notion_info in notion_info_list:
 -                     workspace_id = notion_info['workspace_id']
 -                     data_source_binding = DataSourceOauthBinding.query.filter(
 -                         db.and_(
 -                             DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
 -                             DataSourceOauthBinding.provider == 'notion',
 -                             DataSourceOauthBinding.disabled == False,
 -                             DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 -                         )
 -                     ).first()
 -                     if not data_source_binding:
 -                         raise ValueError('Data source binding not found.')
 -                     for page in notion_info['pages']:
 -                         data_source_info = {
 -                             "notion_workspace_id": workspace_id,
 -                             "notion_page_id": page['page_id'],
 -                             "notion_page_icon": page['page_icon'],
 -                             "type": page['type']
 -                         }
 -             elif document_data["data_source"]["type"] == "website_crawl":
 -                 website_info = document_data["data_source"]['info_list']['website_info_list']
 -                 urls = website_info['urls']
 -                 for url in urls:
 -                     data_source_info = {
 -                         'url': url,
 -                         'provider': website_info['provider'],
 -                         'job_id': website_info['job_id'],
 -                         'only_main_content': website_info.get('only_main_content', False),
 -                         'mode': 'crawl',
 -                     }
 -             document.data_source_type = document_data["data_source"]["type"]
 -             document.data_source_info = json.dumps(data_source_info)
 -             document.name = file_name
 -         # update document to be waiting
 -         document.indexing_status = 'waiting'
 -         document.completed_at = None
 -         document.processing_started_at = None
 -         document.parsing_completed_at = None
 -         document.cleaning_completed_at = None
 -         document.splitting_completed_at = None
 -         document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -         document.created_from = created_from
 -         document.doc_form = document_data['doc_form']
 -         db.session.add(document)
 -         db.session.commit()
 -         # update document segment
 -         update_params = {
 -             DocumentSegment.status: 're_segment'
 -         }
 -         DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
 -         db.session.commit()
 -         # trigger async task
 -         document_indexing_update_task.delay(document.dataset_id, document.id)
 -         return document
 - 
 -     @staticmethod
 -     def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
 -         features = FeatureService.get_features(current_user.current_tenant_id)
 - 
 -         if features.billing.enabled:
 -             count = 0
 -             if document_data["data_source"]["type"] == "upload_file":
 -                 upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 -                 count = len(upload_file_list)
 -             elif document_data["data_source"]["type"] == "notion_import":
 -                 notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 -                 for notion_info in notion_info_list:
 -                     count = count + len(notion_info['pages'])
 -             elif document_data["data_source"]["type"] == "website_crawl":
 -                 website_info = document_data["data_source"]['info_list']['website_info_list']
 -                 count = len(website_info['urls'])
 -             batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
 -             if count > batch_upload_limit:
 -                 raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 - 
 -             DocumentService.check_documents_upload_quota(count, features)
 - 
 -         embedding_model = None
 -         dataset_collection_binding_id = None
 -         retrieval_model = None
 -         if document_data['indexing_technique'] == 'high_quality':
 -             model_manager = ModelManager()
 -             embedding_model = model_manager.get_default_model_instance(
 -                 tenant_id=current_user.current_tenant_id,
 -                 model_type=ModelType.TEXT_EMBEDDING
 -             )
 -             dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 -                 embedding_model.provider,
 -                 embedding_model.model
 -             )
 -             dataset_collection_binding_id = dataset_collection_binding.id
 -             if document_data.get('retrieval_model'):
 -                 retrieval_model = document_data['retrieval_model']
 -             else:
 -                 default_retrieval_model = {
 -                     'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
 -                     'reranking_enable': False,
 -                     'reranking_model': {
 -                         'reranking_provider_name': '',
 -                         'reranking_model_name': ''
 -                     },
 -                     'top_k': 2,
 -                     'score_threshold_enabled': False
 -                 }
 -                 retrieval_model = default_retrieval_model
 -         # save dataset
 -         dataset = Dataset(
 -             tenant_id=tenant_id,
 -             name='',
 -             data_source_type=document_data["data_source"]["type"],
 -             indexing_technique=document_data["indexing_technique"],
 -             created_by=account.id,
 -             embedding_model=embedding_model.model if embedding_model else None,
 -             embedding_model_provider=embedding_model.provider if embedding_model else None,
 -             collection_binding_id=dataset_collection_binding_id,
 -             retrieval_model=retrieval_model
 -         )
 - 
 -         db.session.add(dataset)
 -         db.session.flush()
 - 
 -         documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
 - 
 -         cut_length = 18
 -         cut_name = documents[0].name[:cut_length]
 -         dataset.name = cut_name + '...'
 -         dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
 -         db.session.commit()
 - 
 -         return dataset, documents, batch
 - 
 -     @classmethod
 -     def document_create_args_validate(cls, args: dict):
 -         if 'original_document_id' not in args or not args['original_document_id']:
 -             DocumentService.data_source_args_validate(args)
 -             DocumentService.process_rule_args_validate(args)
 -         else:
 -             if ('data_source' not in args and not args['data_source']) \
 -                 and ('process_rule' not in args and not args['process_rule']):
 -                 raise ValueError("Data source or Process rule is required")
 -             else:
 -                 if args.get('data_source'):
 -                     DocumentService.data_source_args_validate(args)
 -                 if args.get('process_rule'):
 -                     DocumentService.process_rule_args_validate(args)
 - 
 -     @classmethod
 -     def data_source_args_validate(cls, args: dict):
 -         if 'data_source' not in args or not args['data_source']:
 -             raise ValueError("Data source is required")
 - 
 -         if not isinstance(args['data_source'], dict):
 -             raise ValueError("Data source is invalid")
 - 
 -         if 'type' not in args['data_source'] or not args['data_source']['type']:
 -             raise ValueError("Data source type is required")
 - 
 -         if args['data_source']['type'] not in Document.DATA_SOURCES:
 -             raise ValueError("Data source type is invalid")
 - 
 -         if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
 -             raise ValueError("Data source info is required")
 - 
 -         if args['data_source']['type'] == 'upload_file':
 -             if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
 -                 'file_info_list']:
 -                 raise ValueError("File source info is required")
 -         if args['data_source']['type'] == 'notion_import':
 -             if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
 -                 'notion_info_list']:
 -                 raise ValueError("Notion source info is required")
 -         if args['data_source']['type'] == 'website_crawl':
 -             if 'website_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
 -                 'website_info_list']:
 -                 raise ValueError("Website source info is required")
 - 
 -     @classmethod
 -     def process_rule_args_validate(cls, args: dict):
 -         if 'process_rule' not in args or not args['process_rule']:
 -             raise ValueError("Process rule is required")
 - 
 -         if not isinstance(args['process_rule'], dict):
 -             raise ValueError("Process rule is invalid")
 - 
 -         if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
 -             raise ValueError("Process rule mode is required")
 - 
 -         if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
 -             raise ValueError("Process rule mode is invalid")
 - 
 -         if args['process_rule']['mode'] == 'automatic':
 -             args['process_rule']['rules'] = {}
 -         else:
 -             if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
 -                 raise ValueError("Process rule rules is required")
 - 
 -             if not isinstance(args['process_rule']['rules'], dict):
 -                 raise ValueError("Process rule rules is invalid")
 - 
 -             if 'pre_processing_rules' not in args['process_rule']['rules'] \
 -                 or args['process_rule']['rules']['pre_processing_rules'] is None:
 -                 raise ValueError("Process rule pre_processing_rules is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
 -                 raise ValueError("Process rule pre_processing_rules is invalid")
 - 
 -             unique_pre_processing_rule_dicts = {}
 -             for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
 -                 if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
 -                     raise ValueError("Process rule pre_processing_rules id is required")
 - 
 -                 if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 -                     raise ValueError("Process rule pre_processing_rules id is invalid")
 - 
 -                 if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
 -                     raise ValueError("Process rule pre_processing_rules enabled is required")
 - 
 -                 if not isinstance(pre_processing_rule['enabled'], bool):
 -                     raise ValueError("Process rule pre_processing_rules enabled is invalid")
 - 
 -                 unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
 - 
 -             args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
 - 
 -             if 'segmentation' not in args['process_rule']['rules'] \
 -                 or args['process_rule']['rules']['segmentation'] is None:
 -                 raise ValueError("Process rule segmentation is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation'], dict):
 -                 raise ValueError("Process rule segmentation is invalid")
 - 
 -             if 'separator' not in args['process_rule']['rules']['segmentation'] \
 -                 or not args['process_rule']['rules']['segmentation']['separator']:
 -                 raise ValueError("Process rule segmentation separator is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
 -                 raise ValueError("Process rule segmentation separator is invalid")
 - 
 -             if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
 -                 or not args['process_rule']['rules']['segmentation']['max_tokens']:
 -                 raise ValueError("Process rule segmentation max_tokens is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
 -                 raise ValueError("Process rule segmentation max_tokens is invalid")
 - 
 -     @classmethod
 -     def estimate_args_validate(cls, args: dict):
 -         if 'info_list' not in args or not args['info_list']:
 -             raise ValueError("Data source info is required")
 - 
 -         if not isinstance(args['info_list'], dict):
 -             raise ValueError("Data info is invalid")
 - 
 -         if 'process_rule' not in args or not args['process_rule']:
 -             raise ValueError("Process rule is required")
 - 
 -         if not isinstance(args['process_rule'], dict):
 -             raise ValueError("Process rule is invalid")
 - 
 -         if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
 -             raise ValueError("Process rule mode is required")
 - 
 -         if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
 -             raise ValueError("Process rule mode is invalid")
 - 
 -         if args['process_rule']['mode'] == 'automatic':
 -             args['process_rule']['rules'] = {}
 -         else:
 -             if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
 -                 raise ValueError("Process rule rules is required")
 - 
 -             if not isinstance(args['process_rule']['rules'], dict):
 -                 raise ValueError("Process rule rules is invalid")
 - 
 -             if 'pre_processing_rules' not in args['process_rule']['rules'] \
 -                 or args['process_rule']['rules']['pre_processing_rules'] is None:
 -                 raise ValueError("Process rule pre_processing_rules is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
 -                 raise ValueError("Process rule pre_processing_rules is invalid")
 - 
 -             unique_pre_processing_rule_dicts = {}
 -             for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
 -                 if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
 -                     raise ValueError("Process rule pre_processing_rules id is required")
 - 
 -                 if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 -                     raise ValueError("Process rule pre_processing_rules id is invalid")
 - 
 -                 if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
 -                     raise ValueError("Process rule pre_processing_rules enabled is required")
 - 
 -                 if not isinstance(pre_processing_rule['enabled'], bool):
 -                     raise ValueError("Process rule pre_processing_rules enabled is invalid")
 - 
 -                 unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
 - 
 -             args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
 - 
 -             if 'segmentation' not in args['process_rule']['rules'] \
 -                 or args['process_rule']['rules']['segmentation'] is None:
 -                 raise ValueError("Process rule segmentation is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation'], dict):
 -                 raise ValueError("Process rule segmentation is invalid")
 - 
 -             if 'separator' not in args['process_rule']['rules']['segmentation'] \
 -                 or not args['process_rule']['rules']['segmentation']['separator']:
 -                 raise ValueError("Process rule segmentation separator is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
 -                 raise ValueError("Process rule segmentation separator is invalid")
 - 
 -             if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
 -                 or not args['process_rule']['rules']['segmentation']['max_tokens']:
 -                 raise ValueError("Process rule segmentation max_tokens is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
 -                 raise ValueError("Process rule segmentation max_tokens is invalid")
 - 
 - 
 - class SegmentService:
 -     @classmethod
 -     def segment_create_args_validate(cls, args: dict, document: Document):
 -         if document.doc_form == 'qa_model':
 -             if 'answer' not in args or not args['answer']:
 -                 raise ValueError("Answer is required")
 -             if not args['answer'].strip():
 -                 raise ValueError("Answer is empty")
 -         if 'content' not in args or not args['content'] or not args['content'].strip():
 -             raise ValueError("Content is empty")
 - 
 -     @classmethod
 -     def create_segment(cls, args: dict, document: Document, dataset: Dataset):
 -         content = args['content']
 -         doc_id = str(uuid.uuid4())
 -         segment_hash = helper.generate_text_hash(content)
 -         tokens = 0
 -         if dataset.indexing_technique == 'high_quality':
 -             model_manager = ModelManager()
 -             embedding_model = model_manager.get_model_instance(
 -                 tenant_id=current_user.current_tenant_id,
 -                 provider=dataset.embedding_model_provider,
 -                 model_type=ModelType.TEXT_EMBEDDING,
 -                 model=dataset.embedding_model
 -             )
 -             # calc embedding use tokens
 -             tokens = embedding_model.get_text_embedding_num_tokens(
 -                 texts=[content]
 -             )
 -         lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
 -         with redis_client.lock(lock_name, timeout=600):
 -             max_position = db.session.query(func.max(DocumentSegment.position)).filter(
 -                 DocumentSegment.document_id == document.id
 -             ).scalar()
 -             segment_document = DocumentSegment(
 -                 tenant_id=current_user.current_tenant_id,
 -                 dataset_id=document.dataset_id,
 -                 document_id=document.id,
 -                 index_node_id=doc_id,
 -                 index_node_hash=segment_hash,
 -                 position=max_position + 1 if max_position else 1,
 -                 content=content,
 -                 word_count=len(content),
 -                 tokens=tokens,
 -                 status='completed',
 -                 indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 -                 completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 -                 created_by=current_user.id
 -             )
 -             if document.doc_form == 'qa_model':
 -                 segment_document.answer = args['answer']
 - 
 -             db.session.add(segment_document)
 -             db.session.commit()
 - 
 -             # save vector index
 -             try:
 -                 VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
 -             except Exception as e:
 -                 logging.exception("create segment index failed")
 -                 segment_document.enabled = False
 -                 segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -                 segment_document.status = 'error'
 -                 segment_document.error = str(e)
 -                 db.session.commit()
 -             segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
 -             return segment
 - 
 -     @classmethod
 -     def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
 -         lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
 -         with redis_client.lock(lock_name, timeout=600):
 -             embedding_model = None
 -             if dataset.indexing_technique == 'high_quality':
 -                 model_manager = ModelManager()
 -                 embedding_model = model_manager.get_model_instance(
 -                     tenant_id=current_user.current_tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model
 -                 )
 -             max_position = db.session.query(func.max(DocumentSegment.position)).filter(
 -                 DocumentSegment.document_id == document.id
 -             ).scalar()
 -             pre_segment_data_list = []
 -             segment_data_list = []
 -             keywords_list = []
 -             for segment_item in segments:
 -                 content = segment_item['content']
 -                 doc_id = str(uuid.uuid4())
 -                 segment_hash = helper.generate_text_hash(content)
 -                 tokens = 0
 -                 if dataset.indexing_technique == 'high_quality' and embedding_model:
 -                     # calc embedding use tokens
 -                     tokens = embedding_model.get_text_embedding_num_tokens(
 -                         texts=[content]
 -                     )
 -                 segment_document = DocumentSegment(
 -                     tenant_id=current_user.current_tenant_id,
 -                     dataset_id=document.dataset_id,
 -                     document_id=document.id,
 -                     index_node_id=doc_id,
 -                     index_node_hash=segment_hash,
 -                     position=max_position + 1 if max_position else 1,
 -                     content=content,
 -                     word_count=len(content),
 -                     tokens=tokens,
 -                     status='completed',
 -                     indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 -                     completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 -                     created_by=current_user.id
 -                 )
 -                 if document.doc_form == 'qa_model':
 -                     segment_document.answer = segment_item['answer']
 -                 db.session.add(segment_document)
 -                 segment_data_list.append(segment_document)
 - 
 -                 pre_segment_data_list.append(segment_document)
 -                 if 'keywords' in segment_item:
 -                     keywords_list.append(segment_item['keywords'])
 -                 else:
 -                     keywords_list.append(None)
 - 
 -             try:
 -                 # save vector index
 -                 VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
 -             except Exception as e:
 -                 logging.exception("create segment index failed")
 -                 for segment_document in segment_data_list:
 -                     segment_document.enabled = False
 -                     segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -                     segment_document.status = 'error'
 -                     segment_document.error = str(e)
 -             db.session.commit()
 -             return segment_data_list
 - 
 -     @classmethod
 -     def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
 -         indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
 -         cache_result = redis_client.get(indexing_cache_key)
 -         if cache_result is not None:
 -             raise ValueError("Segment is indexing, please try again later")
 -         if 'enabled' in args and args['enabled'] is not None:
 -             action = args['enabled']
 -             if segment.enabled != action:
 -                 if not action:
 -                     segment.enabled = action
 -                     segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -                     segment.disabled_by = current_user.id
 -                     db.session.add(segment)
 -                     db.session.commit()
 -                     # Set cache to prevent indexing the same segment multiple times
 -                     redis_client.setex(indexing_cache_key, 600, 1)
 -                     disable_segment_from_index_task.delay(segment.id)
 -                     return segment
 -         if not segment.enabled:
 -             if 'enabled' in args and args['enabled'] is not None:
 -                 if not args['enabled']:
 -                     raise ValueError("Can't update disabled segment")
 -             else:
 -                 raise ValueError("Can't update disabled segment")
 -         try:
 -             content = args['content']
 -             if segment.content == content:
 -                 if document.doc_form == 'qa_model':
 -                     segment.answer = args['answer']
 -                 if args.get('keywords'):
 -                     segment.keywords = args['keywords']
 -                 segment.enabled = True
 -                 segment.disabled_at = None
 -                 segment.disabled_by = None
 -                 db.session.add(segment)
 -                 db.session.commit()
 -                 # update segment index task
 -                 if 'keywords' in args:
 -                     keyword = Keyword(dataset)
 -                     keyword.delete_by_ids([segment.index_node_id])
 -                     document = RAGDocument(
 -                         page_content=segment.content,
 -                         metadata={
 -                             "doc_id": segment.index_node_id,
 -                             "doc_hash": segment.index_node_hash,
 -                             "document_id": segment.document_id,
 -                             "dataset_id": segment.dataset_id,
 -                         }
 -                     )
 -                     keyword.add_texts([document], keywords_list=[args['keywords']])
 -             else:
 -                 segment_hash = helper.generate_text_hash(content)
 -                 tokens = 0
 -                 if dataset.indexing_technique == 'high_quality':
 -                     model_manager = ModelManager()
 -                     embedding_model = model_manager.get_model_instance(
 -                         tenant_id=current_user.current_tenant_id,
 -                         provider=dataset.embedding_model_provider,
 -                         model_type=ModelType.TEXT_EMBEDDING,
 -                         model=dataset.embedding_model
 -                     )
 - 
 -                     # calc embedding use tokens
 -                     tokens = embedding_model.get_text_embedding_num_tokens(
 -                         texts=[content]
 -                     )
 -                 segment.content = content
 -                 segment.index_node_hash = segment_hash
 -                 segment.word_count = len(content)
 -                 segment.tokens = tokens
 -                 segment.status = 'completed'
 -                 segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -                 segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -                 segment.updated_by = current_user.id
 -                 segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -                 segment.enabled = True
 -                 segment.disabled_at = None
 -                 segment.disabled_by = None
 -                 if document.doc_form == 'qa_model':
 -                     segment.answer = args['answer']
 -                 db.session.add(segment)
 -                 db.session.commit()
 -                 # update segment vector index
 -                 VectorService.update_segment_vector(args['keywords'], segment, dataset)
 - 
 -         except Exception as e:
 -             logging.exception("update segment index failed")
 -             segment.enabled = False
 -             segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -             segment.status = 'error'
 -             segment.error = str(e)
 -             db.session.commit()
 -         segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
 -         return segment
 - 
 -     @classmethod
 -     def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
 -         indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
 -         cache_result = redis_client.get(indexing_cache_key)
 -         if cache_result is not None:
 -             raise ValueError("Segment is deleting.")
 - 
 -         # enabled segment need to delete index
 -         if segment.enabled:
 -             # send delete segment index task
 -             redis_client.setex(indexing_cache_key, 600, 1)
 -             delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
 -         db.session.delete(segment)
 -         db.session.commit()
 - 
 - 
 - class DatasetCollectionBindingService:
 -     @classmethod
 -     def get_dataset_collection_binding(
 -         cls, provider_name: str, model_name: str,
 -         collection_type: str = 'dataset'
 -     ) -> DatasetCollectionBinding:
 -         dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
 -             filter(
 -             DatasetCollectionBinding.provider_name == provider_name,
 -             DatasetCollectionBinding.model_name == model_name,
 -             DatasetCollectionBinding.type == collection_type
 -         ). \
 -             order_by(DatasetCollectionBinding.created_at). \
 -             first()
 - 
 -         if not dataset_collection_binding:
 -             dataset_collection_binding = DatasetCollectionBinding(
 -                 provider_name=provider_name,
 -                 model_name=model_name,
 -                 collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
 -                 type=collection_type
 -             )
 -             db.session.add(dataset_collection_binding)
 -             db.session.commit()
 -         return dataset_collection_binding
 - 
 -     @classmethod
 -     def get_dataset_collection_binding_by_id_and_type(
 -         cls, collection_binding_id: str,
 -         collection_type: str = 'dataset'
 -     ) -> DatasetCollectionBinding:
 -         dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
 -             filter(
 -             DatasetCollectionBinding.id == collection_binding_id,
 -             DatasetCollectionBinding.type == collection_type
 -         ). \
 -             order_by(DatasetCollectionBinding.created_at). \
 -             first()
 - 
 -         return dataset_collection_binding
 - 
 - 
 - class DatasetPermissionService:
 -     @classmethod
 -     def get_dataset_partial_member_list(cls, dataset_id):
 -         user_list_query = db.session.query(
 -             DatasetPermission.account_id,
 -         ).filter(
 -             DatasetPermission.dataset_id == dataset_id
 -         ).all()
 - 
 -         user_list = []
 -         for user in user_list_query:
 -             user_list.append(user.account_id)
 - 
 -         return user_list
 - 
 -     @classmethod
 -     def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
 -         try:
 -             db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
 -             permissions = []
 -             for user in user_list:
 -                 permission = DatasetPermission(
 -                     tenant_id=tenant_id,
 -                     dataset_id=dataset_id,
 -                     account_id=user['user_id'],
 -                 )
 -                 permissions.append(permission)
 - 
 -             db.session.add_all(permissions)
 -             db.session.commit()
 -         except Exception as e:
 -             db.session.rollback()
 -             raise e
 - 
 -     @classmethod
 -     def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
 -         if not user.is_dataset_editor:
 -             raise NoPermissionError('User does not have permission to edit this dataset.')
 - 
 -         if user.is_dataset_operator and dataset.permission != requested_permission:
 -             raise NoPermissionError('Dataset operators cannot change the dataset permissions.')
 - 
 -         if user.is_dataset_operator and requested_permission == 'partial_members':
 -             if not requested_partial_member_list:
 -                 raise ValueError('Partial member list is required when setting to partial members.')
 - 
 -             local_member_list = cls.get_dataset_partial_member_list(dataset.id)
 -             request_member_list = [user['user_id'] for user in requested_partial_member_list]
 -             if set(local_member_list) != set(request_member_list):
 -                 raise ValueError('Dataset operators cannot change the dataset permissions.')
 - 
 -     @classmethod
 -     def clear_partial_member_list(cls, dataset_id):
 -         try:
 -             db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
 -             db.session.commit()
 -         except Exception as e:
 -             db.session.rollback()
 -             raise e
 
 
  |