- import logging
 - import threading
 - import time
 - from typing import List
 - 
 - import numpy as np
 - from core.embedding.cached_embedding import CacheEmbedding
 - from core.model_manager import ModelManager
 - from core.model_runtime.entities.model_entities import ModelType
 - from core.rerank.rerank import RerankRunner
 - from extensions.ext_database import db
 - from flask import current_app
 - from langchain.embeddings.base import Embeddings
 - from langchain.schema import Document
 - from models.account import Account
 - from models.dataset import Dataset, DatasetQuery, DocumentSegment
 - from services.retrieval_service import RetrievalService
 - from sklearn.manifold import TSNE
 - 
 - default_retrieval_model = {
 -     'search_method': 'semantic_search',
 -     'reranking_enable': False,
 -     'reranking_model': {
 -         'reranking_provider_name': '',
 -         'reranking_model_name': ''
 -     },
 -     'top_k': 2,
 -     'score_threshold_enabled': False
 - }
 - 
 - class HitTestingService:
 -     @classmethod
 -     def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
 -         if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
 -             return {
 -                 "query": {
 -                     "content": query,
 -                     "tsne_position": {'x': 0, 'y': 0},
 -                 },
 -                 "records": []
 -             }
 - 
 -         start = time.perf_counter()
 - 
 -         # get retrieval model , if the model is not setting , using default
 -         if not retrieval_model:
 -             retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
 - 
 -         # get embedding model
 -         model_manager = ModelManager()
 -         embedding_model = model_manager.get_model_instance(
 -             tenant_id=dataset.tenant_id,
 -             model_type=ModelType.TEXT_EMBEDDING,
 -             provider=dataset.embedding_model_provider,
 -             model=dataset.embedding_model
 -         )
 - 
 -         embeddings = CacheEmbedding(embedding_model)
 - 
 -         all_documents = []
 -         threads = []
 - 
 -         # retrieval_model source with semantic
 -         if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
 -             embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
 -                 'flask_app': current_app._get_current_object(),
 -                 'dataset_id': str(dataset.id),
 -                 'query': query,
 -                 'top_k': retrieval_model['top_k'],
 -                 'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
 -                 'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
 -                 'all_documents': all_documents,
 -                 'search_method': retrieval_model['search_method'],
 -                 'embeddings': embeddings
 -             })
 -             threads.append(embedding_thread)
 -             embedding_thread.start()
 - 
 -         # retrieval source with full text
 -         if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
 -             full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
 -                 'flask_app': current_app._get_current_object(),
 -                 'dataset_id': str(dataset.id),
 -                 'query': query,
 -                 'search_method': retrieval_model['search_method'],
 -                 'embeddings': embeddings,
 -                 'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
 -                 'top_k': retrieval_model['top_k'],
 -                 'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
 -                 'all_documents': all_documents
 -             })
 -             threads.append(full_text_index_thread)
 -             full_text_index_thread.start()
 - 
 -         for thread in threads:
 -             thread.join()
 - 
 -         if retrieval_model['search_method'] == 'hybrid_search':
 -             model_manager = ModelManager()
 -             rerank_model_instance = model_manager.get_model_instance(
 -                 tenant_id=dataset.tenant_id,
 -                 provider=retrieval_model['reranking_model']['reranking_provider_name'],
 -                 model_type=ModelType.RERANK,
 -                 model=retrieval_model['reranking_model']['reranking_model_name']
 -             )
 - 
 -             rerank_runner = RerankRunner(rerank_model_instance)
 -             all_documents = rerank_runner.run(
 -                 query=query,
 -                 documents=all_documents,
 -                 score_threshold=retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
 -                 top_n=retrieval_model['top_k'],
 -                 user=f"account-{account.id}"
 -             )
 - 
 -         end = time.perf_counter()
 -         logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
 - 
 -         dataset_query = DatasetQuery(
 -             dataset_id=dataset.id,
 -             content=query,
 -             source='hit_testing',
 -             created_by_role='account',
 -             created_by=account.id
 -         )
 - 
 -         db.session.add(dataset_query)
 -         db.session.commit()
 - 
 -         return cls.compact_retrieve_response(dataset, embeddings, query, all_documents)
 - 
 -     @classmethod
 -     def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: List[Document]):
 -         text_embeddings = [
 -             embeddings.embed_query(query)
 -         ]
 - 
 -         text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
 - 
 -         tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
 - 
 -         query_position = tsne_position_data.pop(0)
 - 
 -         i = 0
 -         records = []
 -         for document in documents:
 -             index_node_id = document.metadata['doc_id']
 - 
 -             segment = db.session.query(DocumentSegment).filter(
 -                 DocumentSegment.dataset_id == dataset.id,
 -                 DocumentSegment.enabled == True,
 -                 DocumentSegment.status == 'completed',
 -                 DocumentSegment.index_node_id == index_node_id
 -             ).first()
 - 
 -             if not segment:
 -                 i += 1
 -                 continue
 - 
 -             record = {
 -                 "segment": segment,
 -                 "score": document.metadata.get('score', None),
 -                 "tsne_position": tsne_position_data[i]
 -             }
 - 
 -             records.append(record)
 - 
 -             i += 1
 - 
 -         return {
 -             "query": {
 -                 "content": query,
 -                 "tsne_position": query_position,
 -             },
 -             "records": records
 -         }
 - 
 -     @classmethod
 -     def get_tsne_positions_from_embeddings(cls, embeddings: list):
 -         embedding_length = len(embeddings)
 -         if embedding_length <= 1:
 -             return [{'x': 0, 'y': 0}]
 - 
 -         concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
 -         # concatenate_data = np.concatenate(embeddings)
 - 
 -         perplexity = embedding_length / 2 + 1
 -         if perplexity >= embedding_length:
 -             perplexity = max(embedding_length - 1, 1)
 - 
 -         tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
 -         data_tsne = tsne.fit_transform(concatenate_data)
 - 
 -         tsne_position_data = []
 -         for i in range(len(data_tsne)):
 -             tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
 - 
 -         return tsne_position_data
 - 
 -     @classmethod
 -     def hit_testing_args_check(cls, args):
 -         query = args['query']
 - 
 -         if not query or len(query) > 250:
 -             raise ValueError('Query is required and cannot exceed 250 characters')
 - 
 
 
  |