You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

document.py 21KB

2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. import json
  2. from flask import request
  3. from flask_restful import marshal, reqparse
  4. from sqlalchemy import desc, select
  5. from werkzeug.exceptions import NotFound
  6. import services
  7. from controllers.common.errors import FilenameNotExistsError
  8. from controllers.service_api import api
  9. from controllers.service_api.app.error import (
  10. FileTooLargeError,
  11. NoFileUploadedError,
  12. ProviderNotInitializeError,
  13. TooManyFilesError,
  14. UnsupportedFileTypeError,
  15. )
  16. from controllers.service_api.dataset.error import (
  17. ArchivedDocumentImmutableError,
  18. DocumentIndexingError,
  19. )
  20. from controllers.service_api.wraps import (
  21. DatasetApiResource,
  22. cloud_edition_billing_rate_limit_check,
  23. cloud_edition_billing_resource_check,
  24. )
  25. from core.errors.error import ProviderTokenNotInitError
  26. from extensions.ext_database import db
  27. from fields.document_fields import document_fields, document_status_fields
  28. from libs.login import current_user
  29. from models.dataset import Dataset, Document, DocumentSegment
  30. from services.dataset_service import DatasetService, DocumentService
  31. from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
  32. from services.file_service import FileService
  33. class DocumentAddByTextApi(DatasetApiResource):
  34. """Resource for documents."""
  35. @cloud_edition_billing_resource_check("vector_space", "dataset")
  36. @cloud_edition_billing_resource_check("documents", "dataset")
  37. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  38. def post(self, tenant_id, dataset_id):
  39. """Create document by text."""
  40. parser = reqparse.RequestParser()
  41. parser.add_argument("name", type=str, required=True, nullable=False, location="json")
  42. parser.add_argument("text", type=str, required=True, nullable=False, location="json")
  43. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  44. parser.add_argument("original_document_id", type=str, required=False, location="json")
  45. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  46. parser.add_argument(
  47. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  48. )
  49. parser.add_argument(
  50. "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
  51. )
  52. parser.add_argument("retrieval_model", type=dict, required=False, nullable=True, location="json")
  53. parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
  54. parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")
  55. args = parser.parse_args()
  56. dataset_id = str(dataset_id)
  57. tenant_id = str(tenant_id)
  58. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  59. if not dataset:
  60. raise ValueError("Dataset does not exist.")
  61. if not dataset.indexing_technique and not args["indexing_technique"]:
  62. raise ValueError("indexing_technique is required.")
  63. text = args.get("text")
  64. name = args.get("name")
  65. if text is None or name is None:
  66. raise ValueError("Both 'text' and 'name' must be non-null values.")
  67. if args.get("embedding_model_provider"):
  68. DatasetService.check_embedding_model_setting(
  69. tenant_id, args.get("embedding_model_provider"), args.get("embedding_model")
  70. )
  71. if (
  72. args.get("retrieval_model")
  73. and args.get("retrieval_model").get("reranking_model")
  74. and args.get("retrieval_model").get("reranking_model").get("reranking_provider_name")
  75. ):
  76. DatasetService.check_reranking_model_setting(
  77. tenant_id,
  78. args.get("retrieval_model").get("reranking_model").get("reranking_provider_name"),
  79. args.get("retrieval_model").get("reranking_model").get("reranking_model_name"),
  80. )
  81. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  82. data_source = {
  83. "type": "upload_file",
  84. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  85. }
  86. args["data_source"] = data_source
  87. knowledge_config = KnowledgeConfig(**args)
  88. # validate args
  89. DocumentService.document_create_args_validate(knowledge_config)
  90. try:
  91. documents, batch = DocumentService.save_document_with_dataset_id(
  92. dataset=dataset,
  93. knowledge_config=knowledge_config,
  94. account=current_user,
  95. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  96. created_from="api",
  97. )
  98. except ProviderTokenNotInitError as ex:
  99. raise ProviderNotInitializeError(ex.description)
  100. document = documents[0]
  101. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  102. return documents_and_batch_fields, 200
  103. class DocumentUpdateByTextApi(DatasetApiResource):
  104. """Resource for update documents."""
  105. @cloud_edition_billing_resource_check("vector_space", "dataset")
  106. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  107. def post(self, tenant_id, dataset_id, document_id):
  108. """Update document by text."""
  109. parser = reqparse.RequestParser()
  110. parser.add_argument("name", type=str, required=False, nullable=True, location="json")
  111. parser.add_argument("text", type=str, required=False, nullable=True, location="json")
  112. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  113. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  114. parser.add_argument(
  115. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  116. )
  117. parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  118. args = parser.parse_args()
  119. dataset_id = str(dataset_id)
  120. tenant_id = str(tenant_id)
  121. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  122. if not dataset:
  123. raise ValueError("Dataset does not exist.")
  124. if (
  125. args.get("retrieval_model")
  126. and args.get("retrieval_model").get("reranking_model")
  127. and args.get("retrieval_model").get("reranking_model").get("reranking_provider_name")
  128. ):
  129. DatasetService.check_reranking_model_setting(
  130. tenant_id,
  131. args.get("retrieval_model").get("reranking_model").get("reranking_provider_name"),
  132. args.get("retrieval_model").get("reranking_model").get("reranking_model_name"),
  133. )
  134. # indexing_technique is already set in dataset since this is an update
  135. args["indexing_technique"] = dataset.indexing_technique
  136. if args["text"]:
  137. text = args.get("text")
  138. name = args.get("name")
  139. if text is None or name is None:
  140. raise ValueError("Both text and name must be strings.")
  141. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  142. data_source = {
  143. "type": "upload_file",
  144. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  145. }
  146. args["data_source"] = data_source
  147. # validate args
  148. args["original_document_id"] = str(document_id)
  149. knowledge_config = KnowledgeConfig(**args)
  150. DocumentService.document_create_args_validate(knowledge_config)
  151. try:
  152. documents, batch = DocumentService.save_document_with_dataset_id(
  153. dataset=dataset,
  154. knowledge_config=knowledge_config,
  155. account=current_user,
  156. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  157. created_from="api",
  158. )
  159. except ProviderTokenNotInitError as ex:
  160. raise ProviderNotInitializeError(ex.description)
  161. document = documents[0]
  162. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  163. return documents_and_batch_fields, 200
  164. class DocumentAddByFileApi(DatasetApiResource):
  165. """Resource for documents."""
  166. @cloud_edition_billing_resource_check("vector_space", "dataset")
  167. @cloud_edition_billing_resource_check("documents", "dataset")
  168. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  169. def post(self, tenant_id, dataset_id):
  170. """Create document by upload file."""
  171. args = {}
  172. if "data" in request.form:
  173. args = json.loads(request.form["data"])
  174. if "doc_form" not in args:
  175. args["doc_form"] = "text_model"
  176. if "doc_language" not in args:
  177. args["doc_language"] = "English"
  178. # get dataset info
  179. dataset_id = str(dataset_id)
  180. tenant_id = str(tenant_id)
  181. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  182. if not dataset:
  183. raise ValueError("Dataset does not exist.")
  184. indexing_technique = args.get("indexing_technique") or dataset.indexing_technique
  185. if not indexing_technique:
  186. raise ValueError("indexing_technique is required.")
  187. args["indexing_technique"] = indexing_technique
  188. if "embedding_model_provider" in args:
  189. DatasetService.check_embedding_model_setting(
  190. tenant_id, args["embedding_model_provider"], args["embedding_model"]
  191. )
  192. if (
  193. "retrieval_model" in args
  194. and args["retrieval_model"].get("reranking_model")
  195. and args["retrieval_model"].get("reranking_model").get("reranking_provider_name")
  196. ):
  197. DatasetService.check_reranking_model_setting(
  198. tenant_id,
  199. args["retrieval_model"].get("reranking_model").get("reranking_provider_name"),
  200. args["retrieval_model"].get("reranking_model").get("reranking_model_name"),
  201. )
  202. # save file info
  203. file = request.files["file"]
  204. # check file
  205. if "file" not in request.files:
  206. raise NoFileUploadedError()
  207. if len(request.files) > 1:
  208. raise TooManyFilesError()
  209. if not file.filename:
  210. raise FilenameNotExistsError
  211. upload_file = FileService.upload_file(
  212. filename=file.filename,
  213. content=file.read(),
  214. mimetype=file.mimetype,
  215. user=current_user,
  216. source="datasets",
  217. )
  218. data_source = {
  219. "type": "upload_file",
  220. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  221. }
  222. args["data_source"] = data_source
  223. # validate args
  224. knowledge_config = KnowledgeConfig(**args)
  225. DocumentService.document_create_args_validate(knowledge_config)
  226. dataset_process_rule = dataset.latest_process_rule if "process_rule" not in args else None
  227. if not knowledge_config.original_document_id and not dataset_process_rule and not knowledge_config.process_rule:
  228. raise ValueError("process_rule is required.")
  229. try:
  230. documents, batch = DocumentService.save_document_with_dataset_id(
  231. dataset=dataset,
  232. knowledge_config=knowledge_config,
  233. account=dataset.created_by_account,
  234. dataset_process_rule=dataset_process_rule,
  235. created_from="api",
  236. )
  237. except ProviderTokenNotInitError as ex:
  238. raise ProviderNotInitializeError(ex.description)
  239. document = documents[0]
  240. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  241. return documents_and_batch_fields, 200
  242. class DocumentUpdateByFileApi(DatasetApiResource):
  243. """Resource for update documents."""
  244. @cloud_edition_billing_resource_check("vector_space", "dataset")
  245. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  246. def post(self, tenant_id, dataset_id, document_id):
  247. """Update document by upload file."""
  248. args = {}
  249. if "data" in request.form:
  250. args = json.loads(request.form["data"])
  251. if "doc_form" not in args:
  252. args["doc_form"] = "text_model"
  253. if "doc_language" not in args:
  254. args["doc_language"] = "English"
  255. # get dataset info
  256. dataset_id = str(dataset_id)
  257. tenant_id = str(tenant_id)
  258. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  259. if not dataset:
  260. raise ValueError("Dataset does not exist.")
  261. # indexing_technique is already set in dataset since this is an update
  262. args["indexing_technique"] = dataset.indexing_technique
  263. if "file" in request.files:
  264. # save file info
  265. file = request.files["file"]
  266. if len(request.files) > 1:
  267. raise TooManyFilesError()
  268. if not file.filename:
  269. raise FilenameNotExistsError
  270. try:
  271. upload_file = FileService.upload_file(
  272. filename=file.filename,
  273. content=file.read(),
  274. mimetype=file.mimetype,
  275. user=current_user,
  276. source="datasets",
  277. )
  278. except services.errors.file.FileTooLargeError as file_too_large_error:
  279. raise FileTooLargeError(file_too_large_error.description)
  280. except services.errors.file.UnsupportedFileTypeError:
  281. raise UnsupportedFileTypeError()
  282. data_source = {
  283. "type": "upload_file",
  284. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  285. }
  286. args["data_source"] = data_source
  287. # validate args
  288. args["original_document_id"] = str(document_id)
  289. knowledge_config = KnowledgeConfig(**args)
  290. DocumentService.document_create_args_validate(knowledge_config)
  291. try:
  292. documents, batch = DocumentService.save_document_with_dataset_id(
  293. dataset=dataset,
  294. knowledge_config=knowledge_config,
  295. account=dataset.created_by_account,
  296. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  297. created_from="api",
  298. )
  299. except ProviderTokenNotInitError as ex:
  300. raise ProviderNotInitializeError(ex.description)
  301. document = documents[0]
  302. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
  303. return documents_and_batch_fields, 200
  304. class DocumentDeleteApi(DatasetApiResource):
  305. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  306. def delete(self, tenant_id, dataset_id, document_id):
  307. """Delete document."""
  308. document_id = str(document_id)
  309. dataset_id = str(dataset_id)
  310. tenant_id = str(tenant_id)
  311. # get dataset info
  312. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  313. if not dataset:
  314. raise ValueError("Dataset does not exist.")
  315. document = DocumentService.get_document(dataset.id, document_id)
  316. # 404 if document not found
  317. if document is None:
  318. raise NotFound("Document Not Exists.")
  319. # 403 if document is archived
  320. if DocumentService.check_archived(document):
  321. raise ArchivedDocumentImmutableError()
  322. try:
  323. # delete document
  324. DocumentService.delete_document(document)
  325. except services.errors.document.DocumentIndexingError:
  326. raise DocumentIndexingError("Cannot delete document during indexing.")
  327. return 204
  328. class DocumentListApi(DatasetApiResource):
  329. def get(self, tenant_id, dataset_id):
  330. dataset_id = str(dataset_id)
  331. tenant_id = str(tenant_id)
  332. page = request.args.get("page", default=1, type=int)
  333. limit = request.args.get("limit", default=20, type=int)
  334. search = request.args.get("keyword", default=None, type=str)
  335. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  336. if not dataset:
  337. raise NotFound("Dataset not found.")
  338. query = select(Document).filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
  339. if search:
  340. search = f"%{search}%"
  341. query = query.filter(Document.name.like(search))
  342. query = query.order_by(desc(Document.created_at), desc(Document.position))
  343. paginated_documents = db.paginate(select=query, page=page, per_page=limit, max_per_page=100, error_out=False)
  344. documents = paginated_documents.items
  345. response = {
  346. "data": marshal(documents, document_fields),
  347. "has_more": len(documents) == limit,
  348. "limit": limit,
  349. "total": paginated_documents.total,
  350. "page": page,
  351. }
  352. return response
  353. class DocumentIndexingStatusApi(DatasetApiResource):
  354. def get(self, tenant_id, dataset_id, batch):
  355. dataset_id = str(dataset_id)
  356. batch = str(batch)
  357. tenant_id = str(tenant_id)
  358. # get dataset
  359. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  360. if not dataset:
  361. raise NotFound("Dataset not found.")
  362. # get documents
  363. documents = DocumentService.get_batch_documents(dataset_id, batch)
  364. if not documents:
  365. raise NotFound("Documents not found.")
  366. documents_status = []
  367. for document in documents:
  368. completed_segments = (
  369. db.session.query(DocumentSegment)
  370. .filter(
  371. DocumentSegment.completed_at.isnot(None),
  372. DocumentSegment.document_id == str(document.id),
  373. DocumentSegment.status != "re_segment",
  374. )
  375. .count()
  376. )
  377. total_segments = (
  378. db.session.query(DocumentSegment)
  379. .filter(DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment")
  380. .count()
  381. )
  382. # Create a dictionary with document attributes and additional fields
  383. document_dict = {
  384. "id": document.id,
  385. "indexing_status": "paused" if document.is_paused else document.indexing_status,
  386. "processing_started_at": document.processing_started_at,
  387. "parsing_completed_at": document.parsing_completed_at,
  388. "cleaning_completed_at": document.cleaning_completed_at,
  389. "splitting_completed_at": document.splitting_completed_at,
  390. "completed_at": document.completed_at,
  391. "paused_at": document.paused_at,
  392. "error": document.error,
  393. "stopped_at": document.stopped_at,
  394. "completed_segments": completed_segments,
  395. "total_segments": total_segments,
  396. }
  397. documents_status.append(marshal(document_dict, document_status_fields))
  398. data = {"data": documents_status}
  399. return data
  400. api.add_resource(
  401. DocumentAddByTextApi,
  402. "/datasets/<uuid:dataset_id>/document/create_by_text",
  403. "/datasets/<uuid:dataset_id>/document/create-by-text",
  404. )
  405. api.add_resource(
  406. DocumentAddByFileApi,
  407. "/datasets/<uuid:dataset_id>/document/create_by_file",
  408. "/datasets/<uuid:dataset_id>/document/create-by-file",
  409. )
  410. api.add_resource(
  411. DocumentUpdateByTextApi,
  412. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
  413. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
  414. )
  415. api.add_resource(
  416. DocumentUpdateByFileApi,
  417. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
  418. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
  419. )
  420. api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
  421. api.add_resource(DocumentListApi, "/datasets/<uuid:dataset_id>/documents")
  422. api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")