- import json
 - import time
 - import uuid
 - from collections.abc import Generator
 - from unittest.mock import MagicMock, patch
 - 
 - from core.app.entities.app_invoke_entities import InvokeFrom
 - from core.llm_generator.output_parser.structured_output import _parse_structured_output
 - from core.workflow.entities.variable_pool import VariablePool
 - from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionStatus
 - from core.workflow.graph_engine.entities.graph import Graph
 - from core.workflow.graph_engine.entities.graph_init_params import GraphInitParams
 - from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
 - from core.workflow.nodes.event import RunCompletedEvent
 - from core.workflow.nodes.llm.node import LLMNode
 - from core.workflow.system_variable import SystemVariable
 - from extensions.ext_database import db
 - from models.enums import UserFrom
 - from models.workflow import WorkflowType
 - 
 - """FOR MOCK FIXTURES, DO NOT REMOVE"""
 - 
 - 
 - def init_llm_node(config: dict) -> LLMNode:
 -     graph_config = {
 -         "edges": [
 -             {
 -                 "id": "start-source-next-target",
 -                 "source": "start",
 -                 "target": "llm",
 -             },
 -         ],
 -         "nodes": [{"data": {"type": "start"}, "id": "start"}, config],
 -     }
 - 
 -     graph = Graph.init(graph_config=graph_config)
 - 
 -     # Use proper UUIDs for database compatibility
 -     tenant_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056b"
 -     app_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056c"
 -     workflow_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056d"
 -     user_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056e"
 - 
 -     init_params = GraphInitParams(
 -         tenant_id=tenant_id,
 -         app_id=app_id,
 -         workflow_type=WorkflowType.WORKFLOW,
 -         workflow_id=workflow_id,
 -         graph_config=graph_config,
 -         user_id=user_id,
 -         user_from=UserFrom.ACCOUNT,
 -         invoke_from=InvokeFrom.DEBUGGER,
 -         call_depth=0,
 -     )
 - 
 -     # construct variable pool
 -     variable_pool = VariablePool(
 -         system_variables=SystemVariable(
 -             user_id="aaa",
 -             app_id=app_id,
 -             workflow_id=workflow_id,
 -             files=[],
 -             query="what's the weather today?",
 -             conversation_id="abababa",
 -         ),
 -         user_inputs={},
 -         environment_variables=[],
 -         conversation_variables=[],
 -     )
 -     variable_pool.add(["abc", "output"], "sunny")
 - 
 -     node = LLMNode(
 -         id=str(uuid.uuid4()),
 -         graph_init_params=init_params,
 -         graph=graph,
 -         graph_runtime_state=GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter()),
 -         config=config,
 -     )
 - 
 -     # Initialize node data
 -     if "data" in config:
 -         node.init_node_data(config["data"])
 - 
 -     return node
 - 
 - 
 - def test_execute_llm():
 -     node = init_llm_node(
 -         config={
 -             "id": "llm",
 -             "data": {
 -                 "title": "123",
 -                 "type": "llm",
 -                 "model": {
 -                     "provider": "openai",
 -                     "name": "gpt-3.5-turbo",
 -                     "mode": "chat",
 -                     "completion_params": {},
 -                 },
 -                 "prompt_template": [
 -                     {
 -                         "role": "system",
 -                         "text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}.",
 -                     },
 -                     {"role": "user", "text": "{{#sys.query#}}"},
 -                 ],
 -                 "memory": None,
 -                 "context": {"enabled": False},
 -                 "vision": {"enabled": False},
 -             },
 -         },
 -     )
 - 
 -     db.session.close = MagicMock()
 - 
 -     # Mock the _fetch_model_config to avoid database calls
 -     def mock_fetch_model_config(**_kwargs):
 -         from decimal import Decimal
 -         from unittest.mock import MagicMock
 - 
 -         from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
 -         from core.model_runtime.entities.message_entities import AssistantPromptMessage
 - 
 -         # Create mock model instance
 -         mock_model_instance = MagicMock()
 -         mock_usage = LLMUsage(
 -             prompt_tokens=30,
 -             prompt_unit_price=Decimal("0.001"),
 -             prompt_price_unit=Decimal(1000),
 -             prompt_price=Decimal("0.00003"),
 -             completion_tokens=20,
 -             completion_unit_price=Decimal("0.002"),
 -             completion_price_unit=Decimal(1000),
 -             completion_price=Decimal("0.00004"),
 -             total_tokens=50,
 -             total_price=Decimal("0.00007"),
 -             currency="USD",
 -             latency=0.5,
 -         )
 -         mock_message = AssistantPromptMessage(content="Test response from mock")
 -         mock_llm_result = LLMResult(
 -             model="gpt-3.5-turbo",
 -             prompt_messages=[],
 -             message=mock_message,
 -             usage=mock_usage,
 -         )
 -         mock_model_instance.invoke_llm.return_value = mock_llm_result
 - 
 -         # Create mock model config
 -         mock_model_config = MagicMock()
 -         mock_model_config.mode = "chat"
 -         mock_model_config.provider = "openai"
 -         mock_model_config.model = "gpt-3.5-turbo"
 -         mock_model_config.parameters = {}
 - 
 -         return mock_model_instance, mock_model_config
 - 
 -     # Mock fetch_prompt_messages to avoid database calls
 -     def mock_fetch_prompt_messages_1(**_kwargs):
 -         from core.model_runtime.entities.message_entities import SystemPromptMessage, UserPromptMessage
 - 
 -         return [
 -             SystemPromptMessage(content="you are a helpful assistant. today's weather is sunny."),
 -             UserPromptMessage(content="what's the weather today?"),
 -         ], []
 - 
 -     with (
 -         patch.object(LLMNode, "_fetch_model_config", mock_fetch_model_config),
 -         patch.object(LLMNode, "fetch_prompt_messages", mock_fetch_prompt_messages_1),
 -     ):
 -         # execute node
 -         result = node._run()
 -         assert isinstance(result, Generator)
 - 
 -         for item in result:
 -             if isinstance(item, RunCompletedEvent):
 -                 if item.run_result.status != WorkflowNodeExecutionStatus.SUCCEEDED:
 -                     print(f"Error: {item.run_result.error}")
 -                     print(f"Error type: {item.run_result.error_type}")
 -                 assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
 -                 assert item.run_result.process_data is not None
 -                 assert item.run_result.outputs is not None
 -                 assert item.run_result.outputs.get("text") is not None
 -                 assert item.run_result.outputs.get("usage", {})["total_tokens"] > 0
 - 
 - 
 - def test_execute_llm_with_jinja2():
 -     """
 -     Test execute LLM node with jinja2
 -     """
 -     node = init_llm_node(
 -         config={
 -             "id": "llm",
 -             "data": {
 -                 "title": "123",
 -                 "type": "llm",
 -                 "model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
 -                 "prompt_config": {
 -                     "jinja2_variables": [
 -                         {"variable": "sys_query", "value_selector": ["sys", "query"]},
 -                         {"variable": "output", "value_selector": ["abc", "output"]},
 -                     ]
 -                 },
 -                 "prompt_template": [
 -                     {
 -                         "role": "system",
 -                         "text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}",
 -                         "jinja2_text": "you are a helpful assistant.\ntoday's weather is {{output}}.",
 -                         "edition_type": "jinja2",
 -                     },
 -                     {
 -                         "role": "user",
 -                         "text": "{{#sys.query#}}",
 -                         "jinja2_text": "{{sys_query}}",
 -                         "edition_type": "basic",
 -                     },
 -                 ],
 -                 "memory": None,
 -                 "context": {"enabled": False},
 -                 "vision": {"enabled": False},
 -             },
 -         },
 -     )
 - 
 -     # Mock db.session.close()
 -     db.session.close = MagicMock()
 - 
 -     # Mock the _fetch_model_config method
 -     def mock_fetch_model_config(**_kwargs):
 -         from decimal import Decimal
 -         from unittest.mock import MagicMock
 - 
 -         from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
 -         from core.model_runtime.entities.message_entities import AssistantPromptMessage
 - 
 -         # Create mock model instance
 -         mock_model_instance = MagicMock()
 -         mock_usage = LLMUsage(
 -             prompt_tokens=30,
 -             prompt_unit_price=Decimal("0.001"),
 -             prompt_price_unit=Decimal(1000),
 -             prompt_price=Decimal("0.00003"),
 -             completion_tokens=20,
 -             completion_unit_price=Decimal("0.002"),
 -             completion_price_unit=Decimal(1000),
 -             completion_price=Decimal("0.00004"),
 -             total_tokens=50,
 -             total_price=Decimal("0.00007"),
 -             currency="USD",
 -             latency=0.5,
 -         )
 -         mock_message = AssistantPromptMessage(content="Test response: sunny weather and what's the weather today?")
 -         mock_llm_result = LLMResult(
 -             model="gpt-3.5-turbo",
 -             prompt_messages=[],
 -             message=mock_message,
 -             usage=mock_usage,
 -         )
 -         mock_model_instance.invoke_llm.return_value = mock_llm_result
 - 
 -         # Create mock model config
 -         mock_model_config = MagicMock()
 -         mock_model_config.mode = "chat"
 -         mock_model_config.provider = "openai"
 -         mock_model_config.model = "gpt-3.5-turbo"
 -         mock_model_config.parameters = {}
 - 
 -         return mock_model_instance, mock_model_config
 - 
 -     # Mock fetch_prompt_messages to avoid database calls
 -     def mock_fetch_prompt_messages_2(**_kwargs):
 -         from core.model_runtime.entities.message_entities import SystemPromptMessage, UserPromptMessage
 - 
 -         return [
 -             SystemPromptMessage(content="you are a helpful assistant. today's weather is sunny."),
 -             UserPromptMessage(content="what's the weather today?"),
 -         ], []
 - 
 -     with (
 -         patch.object(LLMNode, "_fetch_model_config", mock_fetch_model_config),
 -         patch.object(LLMNode, "fetch_prompt_messages", mock_fetch_prompt_messages_2),
 -     ):
 -         # execute node
 -         result = node._run()
 - 
 -         for item in result:
 -             if isinstance(item, RunCompletedEvent):
 -                 assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
 -                 assert item.run_result.process_data is not None
 -                 assert "sunny" in json.dumps(item.run_result.process_data)
 -                 assert "what's the weather today?" in json.dumps(item.run_result.process_data)
 - 
 - 
 - def test_extract_json():
 -     llm_texts = [
 -         '<think>\n\n</think>{"name": "test", "age": 123',  # resoning model (deepseek-r1)
 -         '{"name":"test","age":123}',  # json schema model (gpt-4o)
 -         '{\n    "name": "test",\n    "age": 123\n}',  # small model (llama-3.2-1b)
 -         '```json\n{"name": "test", "age": 123}\n```',  # json markdown (deepseek-chat)
 -         '{"name":"test",age:123}',  # without quotes (qwen-2.5-0.5b)
 -     ]
 -     result = {"name": "test", "age": 123}
 -     assert all(_parse_structured_output(item) == result for item in llm_texts)
 
 
  |