| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338 | 
                        - import threading
 - from typing import Optional
 - 
 - from flask import Flask, current_app
 - 
 - from core.rag.data_post_processor.data_post_processor import DataPostProcessor
 - from core.rag.datasource.keyword.keyword_factory import Keyword
 - from core.rag.datasource.vdb.vector_factory import Vector
 - from core.rag.embedding.retrieval import RetrievalSegments
 - from core.rag.index_processor.constant.index_type import IndexType
 - from core.rag.models.document import Document
 - from core.rag.rerank.rerank_type import RerankMode
 - from core.rag.retrieval.retrieval_methods import RetrievalMethod
 - from extensions.ext_database import db
 - from models.dataset import ChildChunk, Dataset, DocumentSegment
 - from models.dataset import Document as DatasetDocument
 - from services.external_knowledge_service import ExternalDatasetService
 - 
 - default_retrieval_model = {
 -     "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 -     "reranking_enable": False,
 -     "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 -     "top_k": 2,
 -     "score_threshold_enabled": False,
 - }
 - 
 - 
 - class RetrievalService:
 -     @classmethod
 -     def retrieve(
 -         cls,
 -         retrieval_method: str,
 -         dataset_id: str,
 -         query: str,
 -         top_k: int,
 -         score_threshold: Optional[float] = 0.0,
 -         reranking_model: Optional[dict] = None,
 -         reranking_mode: str = "reranking_model",
 -         weights: Optional[dict] = None,
 -     ):
 -         if not query:
 -             return []
 -         dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 -         if not dataset:
 -             return []
 - 
 -         if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
 -             return []
 -         all_documents: list[Document] = []
 -         threads: list[threading.Thread] = []
 -         exceptions: list[str] = []
 -         # retrieval_model source with keyword
 -         if retrieval_method == "keyword_search":
 -             keyword_thread = threading.Thread(
 -                 target=RetrievalService.keyword_search,
 -                 kwargs={
 -                     "flask_app": current_app._get_current_object(),  # type: ignore
 -                     "dataset_id": dataset_id,
 -                     "query": query,
 -                     "top_k": top_k,
 -                     "all_documents": all_documents,
 -                     "exceptions": exceptions,
 -                 },
 -             )
 -             threads.append(keyword_thread)
 -             keyword_thread.start()
 -         # retrieval_model source with semantic
 -         if RetrievalMethod.is_support_semantic_search(retrieval_method):
 -             embedding_thread = threading.Thread(
 -                 target=RetrievalService.embedding_search,
 -                 kwargs={
 -                     "flask_app": current_app._get_current_object(),  # type: ignore
 -                     "dataset_id": dataset_id,
 -                     "query": query,
 -                     "top_k": top_k,
 -                     "score_threshold": score_threshold,
 -                     "reranking_model": reranking_model,
 -                     "all_documents": all_documents,
 -                     "retrieval_method": retrieval_method,
 -                     "exceptions": exceptions,
 -                 },
 -             )
 -             threads.append(embedding_thread)
 -             embedding_thread.start()
 - 
 -         # retrieval source with full text
 -         if RetrievalMethod.is_support_fulltext_search(retrieval_method):
 -             full_text_index_thread = threading.Thread(
 -                 target=RetrievalService.full_text_index_search,
 -                 kwargs={
 -                     "flask_app": current_app._get_current_object(),  # type: ignore
 -                     "dataset_id": dataset_id,
 -                     "query": query,
 -                     "retrieval_method": retrieval_method,
 -                     "score_threshold": score_threshold,
 -                     "top_k": top_k,
 -                     "reranking_model": reranking_model,
 -                     "all_documents": all_documents,
 -                     "exceptions": exceptions,
 -                 },
 -             )
 -             threads.append(full_text_index_thread)
 -             full_text_index_thread.start()
 - 
 -         for thread in threads:
 -             thread.join()
 - 
 -         if exceptions:
 -             exception_message = ";\n".join(exceptions)
 -             raise ValueError(exception_message)
 - 
 -         if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
 -             data_post_processor = DataPostProcessor(
 -                 str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
 -             )
 -             all_documents = data_post_processor.invoke(
 -                 query=query,
 -                 documents=all_documents,
 -                 score_threshold=score_threshold,
 -                 top_n=top_k,
 -             )
 - 
 -         return all_documents
 - 
 -     @classmethod
 -     def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):
 -         dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 -         if not dataset:
 -             return []
 -         all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
 -             dataset.tenant_id, dataset_id, query, external_retrieval_model or {}
 -         )
 -         return all_documents
 - 
 -     @classmethod
 -     def keyword_search(
 -         cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
 -     ):
 -         with flask_app.app_context():
 -             try:
 -                 dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 -                 if not dataset:
 -                     raise ValueError("dataset not found")
 - 
 -                 keyword = Keyword(dataset=dataset)
 - 
 -                 documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
 -                 all_documents.extend(documents)
 -             except Exception as e:
 -                 exceptions.append(str(e))
 - 
 -     @classmethod
 -     def embedding_search(
 -         cls,
 -         flask_app: Flask,
 -         dataset_id: str,
 -         query: str,
 -         top_k: int,
 -         score_threshold: Optional[float],
 -         reranking_model: Optional[dict],
 -         all_documents: list,
 -         retrieval_method: str,
 -         exceptions: list,
 -     ):
 -         with flask_app.app_context():
 -             try:
 -                 dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 -                 if not dataset:
 -                     raise ValueError("dataset not found")
 - 
 -                 vector = Vector(dataset=dataset)
 - 
 -                 documents = vector.search_by_vector(
 -                     cls.escape_query_for_search(query),
 -                     search_type="similarity_score_threshold",
 -                     top_k=top_k,
 -                     score_threshold=score_threshold,
 -                     filter={"group_id": [dataset.id]},
 -                 )
 - 
 -                 if documents:
 -                     if (
 -                         reranking_model
 -                         and reranking_model.get("reranking_model_name")
 -                         and reranking_model.get("reranking_provider_name")
 -                         and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
 -                     ):
 -                         data_post_processor = DataPostProcessor(
 -                             str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
 -                         )
 -                         all_documents.extend(
 -                             data_post_processor.invoke(
 -                                 query=query,
 -                                 documents=documents,
 -                                 score_threshold=score_threshold,
 -                                 top_n=len(documents),
 -                             )
 -                         )
 -                     else:
 -                         all_documents.extend(documents)
 -             except Exception as e:
 -                 exceptions.append(str(e))
 - 
 -     @classmethod
 -     def full_text_index_search(
 -         cls,
 -         flask_app: Flask,
 -         dataset_id: str,
 -         query: str,
 -         top_k: int,
 -         score_threshold: Optional[float],
 -         reranking_model: Optional[dict],
 -         all_documents: list,
 -         retrieval_method: str,
 -         exceptions: list,
 -     ):
 -         with flask_app.app_context():
 -             try:
 -                 dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 -                 if not dataset:
 -                     raise ValueError("dataset not found")
 - 
 -                 vector_processor = Vector(
 -                     dataset=dataset,
 -                 )
 - 
 -                 documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
 -                 if documents:
 -                     if (
 -                         reranking_model
 -                         and reranking_model.get("reranking_model_name")
 -                         and reranking_model.get("reranking_provider_name")
 -                         and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
 -                     ):
 -                         data_post_processor = DataPostProcessor(
 -                             str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
 -                         )
 -                         all_documents.extend(
 -                             data_post_processor.invoke(
 -                                 query=query,
 -                                 documents=documents,
 -                                 score_threshold=score_threshold,
 -                                 top_n=len(documents),
 -                             )
 -                         )
 -                     else:
 -                         all_documents.extend(documents)
 -             except Exception as e:
 -                 exceptions.append(str(e))
 - 
 -     @staticmethod
 -     def escape_query_for_search(query: str) -> str:
 -         return query.replace('"', '\\"')
 - 
 -     @staticmethod
 -     def format_retrieval_documents(documents: list[Document]) -> list[RetrievalSegments]:
 -         records = []
 -         include_segment_ids = []
 -         segment_child_map = {}
 -         for document in documents:
 -             document_id = document.metadata["document_id"]
 -             dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == document_id).first()
 -             if dataset_document and dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
 -                 child_index_node_id = document.metadata["doc_id"]
 -                 result = (
 -                     db.session.query(ChildChunk, DocumentSegment)
 -                     .join(DocumentSegment, ChildChunk.segment_id == DocumentSegment.id)
 -                     .filter(
 -                         ChildChunk.index_node_id == child_index_node_id,
 -                         DocumentSegment.dataset_id == dataset_document.dataset_id,
 -                         DocumentSegment.enabled == True,
 -                         DocumentSegment.status == "completed",
 -                     )
 -                     .first()
 -                 )
 -                 if result:
 -                     child_chunk, segment = result
 -                     if not segment:
 -                         continue
 -                     if segment.id not in include_segment_ids:
 -                         include_segment_ids.append(segment.id)
 -                         child_chunk_detail = {
 -                             "id": child_chunk.id,
 -                             "content": child_chunk.content,
 -                             "position": child_chunk.position,
 -                             "score": document.metadata.get("score", 0.0),
 -                         }
 -                         map_detail = {
 -                             "max_score": document.metadata.get("score", 0.0),
 -                             "child_chunks": [child_chunk_detail],
 -                         }
 -                         segment_child_map[segment.id] = map_detail
 -                         record = {
 -                             "segment": segment,
 -                         }
 -                         records.append(record)
 -                     else:
 -                         child_chunk_detail = {
 -                             "id": child_chunk.id,
 -                             "content": child_chunk.content,
 -                             "position": child_chunk.position,
 -                             "score": document.metadata.get("score", 0.0),
 -                         }
 -                         segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
 -                         segment_child_map[segment.id]["max_score"] = max(
 -                             segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
 -                         )
 -                 else:
 -                     continue
 -             else:
 -                 index_node_id = document.metadata["doc_id"]
 - 
 -                 segment = (
 -                     db.session.query(DocumentSegment)
 -                     .filter(
 -                         DocumentSegment.dataset_id == dataset_document.dataset_id,
 -                         DocumentSegment.enabled == True,
 -                         DocumentSegment.status == "completed",
 -                         DocumentSegment.index_node_id == index_node_id,
 -                     )
 -                     .first()
 -                 )
 - 
 -                 if not segment:
 -                     continue
 -                 include_segment_ids.append(segment.id)
 -                 record = {
 -                     "segment": segment,
 -                     "score": document.metadata.get("score", None),
 -                 }
 - 
 -                 records.append(record)
 -             for record in records:
 -                 if record["segment"].id in segment_child_map:
 -                     record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks", None)
 -                     record["score"] = segment_child_map[record["segment"].id]["max_score"]
 - 
 -         return [RetrievalSegments(**record) for record in records]
 
 
  |