| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824 | 
                        - import json
 - import logging
 - import datetime
 - import time
 - import random
 - from typing import Optional, List
 - from extensions.ext_redis import redis_client
 - from flask_login import current_user
 - 
 - from core.index.index_builder import IndexBuilder
 - from events.dataset_event import dataset_was_deleted
 - from events.document_event import document_was_deleted
 - from extensions.ext_database import db
 - from models.account import Account
 - from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment
 - from models.model import UploadFile
 - from models.source import DataSourceBinding
 - from services.errors.account import NoPermissionError
 - from services.errors.dataset import DatasetNameDuplicateError
 - from services.errors.document import DocumentIndexingError
 - from services.errors.file import FileNotExistsError
 - from tasks.clean_notion_document_task import clean_notion_document_task
 - from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
 - from tasks.document_indexing_task import document_indexing_task
 - from tasks.document_indexing_update_task import document_indexing_update_task
 - 
 - 
 - class DatasetService:
 - 
 -     @staticmethod
 -     def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
 -         if user:
 -             permission_filter = db.or_(Dataset.created_by == user.id,
 -                                        Dataset.permission == 'all_team_members')
 -         else:
 -             permission_filter = Dataset.permission == 'all_team_members'
 -         datasets = Dataset.query.filter(
 -             db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
 -             .paginate(
 -             page=page,
 -             per_page=per_page,
 -             max_per_page=100,
 -             error_out=False
 -         )
 - 
 -         return datasets.items, datasets.total
 - 
 -     @staticmethod
 -     def get_process_rules(dataset_id):
 -         # get the latest process rule
 -         dataset_process_rule = db.session.query(DatasetProcessRule). \
 -             filter(DatasetProcessRule.dataset_id == dataset_id). \
 -             order_by(DatasetProcessRule.created_at.desc()). \
 -             limit(1). \
 -             one_or_none()
 -         if dataset_process_rule:
 -             mode = dataset_process_rule.mode
 -             rules = dataset_process_rule.rules_dict
 -         else:
 -             mode = DocumentService.DEFAULT_RULES['mode']
 -             rules = DocumentService.DEFAULT_RULES['rules']
 -         return {
 -             'mode': mode,
 -             'rules': rules
 -         }
 - 
 -     @staticmethod
 -     def get_datasets_by_ids(ids, tenant_id):
 -         datasets = Dataset.query.filter(Dataset.id.in_(ids),
 -                                         Dataset.tenant_id == tenant_id).paginate(
 -             page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
 -         return datasets.items, datasets.total
 - 
 -     @staticmethod
 -     def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
 -         # check if dataset name already exists
 -         if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
 -             raise DatasetNameDuplicateError(
 -                 f'Dataset with name {name} already exists.')
 - 
 -         dataset = Dataset(name=name, indexing_technique=indexing_technique)
 -         # dataset = Dataset(name=name, provider=provider, config=config)
 -         dataset.created_by = account.id
 -         dataset.updated_by = account.id
 -         dataset.tenant_id = tenant_id
 -         db.session.add(dataset)
 -         db.session.commit()
 -         return dataset
 - 
 -     @staticmethod
 -     def get_dataset(dataset_id):
 -         dataset = Dataset.query.filter_by(
 -             id=dataset_id
 -         ).first()
 -         if dataset is None:
 -             return None
 -         else:
 -             return dataset
 - 
 -     @staticmethod
 -     def update_dataset(dataset_id, data, user):
 -         dataset = DatasetService.get_dataset(dataset_id)
 -         DatasetService.check_dataset_permission(dataset, user)
 -         if dataset.indexing_technique != data['indexing_technique']:
 -             # if update indexing_technique
 -             if data['indexing_technique'] == 'economy':
 -                 deal_dataset_vector_index_task.delay(dataset_id, 'remove')
 -             elif data['indexing_technique'] == 'high_quality':
 -                 deal_dataset_vector_index_task.delay(dataset_id, 'add')
 -         filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
 - 
 -         filtered_data['updated_by'] = user.id
 -         filtered_data['updated_at'] = datetime.datetime.now()
 - 
 -         dataset.query.filter_by(id=dataset_id).update(filtered_data)
 - 
 -         db.session.commit()
 - 
 -         return dataset
 - 
 -     @staticmethod
 -     def delete_dataset(dataset_id, user):
 -         # todo: cannot delete dataset if it is being processed
 - 
 -         dataset = DatasetService.get_dataset(dataset_id)
 - 
 -         if dataset is None:
 -             return False
 - 
 -         DatasetService.check_dataset_permission(dataset, user)
 - 
 -         dataset_was_deleted.send(dataset)
 - 
 -         db.session.delete(dataset)
 -         db.session.commit()
 -         return True
 - 
 -     @staticmethod
 -     def check_dataset_permission(dataset, user):
 -         if dataset.tenant_id != user.current_tenant_id:
 -             logging.debug(
 -                 f'User {user.id} does not have permission to access dataset {dataset.id}')
 -             raise NoPermissionError(
 -                 'You do not have permission to access this dataset.')
 -         if dataset.permission == 'only_me' and dataset.created_by != user.id:
 -             logging.debug(
 -                 f'User {user.id} does not have permission to access dataset {dataset.id}')
 -             raise NoPermissionError(
 -                 'You do not have permission to access this dataset.')
 - 
 -     @staticmethod
 -     def get_dataset_queries(dataset_id: str, page: int, per_page: int):
 -         dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
 -             .order_by(db.desc(DatasetQuery.created_at)) \
 -             .paginate(
 -             page=page, per_page=per_page, max_per_page=100, error_out=False
 -         )
 -         return dataset_queries.items, dataset_queries.total
 - 
 -     @staticmethod
 -     def get_related_apps(dataset_id: str):
 -         return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
 -             .order_by(db.desc(AppDatasetJoin.created_at)).all()
 - 
 - 
 - class DocumentService:
 -     DEFAULT_RULES = {
 -         'mode': 'custom',
 -         'rules': {
 -             'pre_processing_rules': [
 -                 {'id': 'remove_extra_spaces', 'enabled': True},
 -                 {'id': 'remove_urls_emails', 'enabled': False}
 -             ],
 -             'segmentation': {
 -                 'delimiter': '\n',
 -                 'max_tokens': 500
 -             }
 -         }
 -     }
 - 
 -     DOCUMENT_METADATA_SCHEMA = {
 -         "book": {
 -             "title": str,
 -             "language": str,
 -             "author": str,
 -             "publisher": str,
 -             "publication_date": str,
 -             "isbn": str,
 -             "category": str,
 -         },
 -         "web_page": {
 -             "title": str,
 -             "url": str,
 -             "language": str,
 -             "publish_date": str,
 -             "author/publisher": str,
 -             "topic/keywords": str,
 -             "description": str,
 -         },
 -         "paper": {
 -             "title": str,
 -             "language": str,
 -             "author": str,
 -             "publish_date": str,
 -             "journal/conference_name": str,
 -             "volume/issue/page_numbers": str,
 -             "doi": str,
 -             "topic/keywords": str,
 -             "abstract": str,
 -         },
 -         "social_media_post": {
 -             "platform": str,
 -             "author/username": str,
 -             "publish_date": str,
 -             "post_url": str,
 -             "topic/tags": str,
 -         },
 -         "wikipedia_entry": {
 -             "title": str,
 -             "language": str,
 -             "web_page_url": str,
 -             "last_edit_date": str,
 -             "editor/contributor": str,
 -             "summary/introduction": str,
 -         },
 -         "personal_document": {
 -             "title": str,
 -             "author": str,
 -             "creation_date": str,
 -             "last_modified_date": str,
 -             "document_type": str,
 -             "tags/category": str,
 -         },
 -         "business_document": {
 -             "title": str,
 -             "author": str,
 -             "creation_date": str,
 -             "last_modified_date": str,
 -             "document_type": str,
 -             "department/team": str,
 -         },
 -         "im_chat_log": {
 -             "chat_platform": str,
 -             "chat_participants/group_name": str,
 -             "start_date": str,
 -             "end_date": str,
 -             "summary": str,
 -         },
 -         "synced_from_notion": {
 -             "title": str,
 -             "language": str,
 -             "author/creator": str,
 -             "creation_date": str,
 -             "last_modified_date": str,
 -             "notion_page_link": str,
 -             "category/tags": str,
 -             "description": str,
 -         },
 -         "synced_from_github": {
 -             "repository_name": str,
 -             "repository_description": str,
 -             "repository_owner/organization": str,
 -             "code_filename": str,
 -             "code_file_path": str,
 -             "programming_language": str,
 -             "github_link": str,
 -             "open_source_license": str,
 -             "commit_date": str,
 -             "commit_author": str
 -         }
 -     }
 - 
 -     @staticmethod
 -     def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
 -         document = db.session.query(Document).filter(
 -             Document.id == document_id,
 -             Document.dataset_id == dataset_id
 -         ).first()
 - 
 -         return document
 - 
 -     @staticmethod
 -     def get_document_by_id(document_id: str) -> Optional[Document]:
 -         document = db.session.query(Document).filter(
 -             Document.id == document_id
 -         ).first()
 - 
 -         return document
 - 
 -     @staticmethod
 -     def get_document_by_dataset_id(dataset_id: str) -> List[Document]:
 -         documents = db.session.query(Document).filter(
 -             Document.dataset_id == dataset_id,
 -             Document.enabled == True
 -         ).all()
 - 
 -         return documents
 - 
 -     @staticmethod
 -     def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:
 -         documents = db.session.query(Document).filter(
 -             Document.batch == batch,
 -             Document.dataset_id == dataset_id,
 -             Document.tenant_id == current_user.current_tenant_id
 -         ).all()
 - 
 -         return documents
 -     @staticmethod
 -     def get_document_file_detail(file_id: str):
 -         file_detail = db.session.query(UploadFile). \
 -             filter(UploadFile.id == file_id). \
 -             one_or_none()
 -         return file_detail
 - 
 -     @staticmethod
 -     def check_archived(document):
 -         if document.archived:
 -             return True
 -         else:
 -             return False
 - 
 -     @staticmethod
 -     def delete_document(document):
 -         if document.indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:
 -             raise DocumentIndexingError()
 - 
 -         # trigger document_was_deleted signal
 -         document_was_deleted.send(document.id, dataset_id=document.dataset_id)
 - 
 -         db.session.delete(document)
 -         db.session.commit()
 - 
 -     @staticmethod
 -     def pause_document(document):
 -         if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
 -             raise DocumentIndexingError()
 -         # update document to be paused
 -         document.is_paused = True
 -         document.paused_by = current_user.id
 -         document.paused_at = datetime.datetime.utcnow()
 - 
 -         db.session.add(document)
 -         db.session.commit()
 -         # set document paused flag
 -         indexing_cache_key = 'document_{}_is_paused'.format(document.id)
 -         redis_client.setnx(indexing_cache_key, "True")
 - 
 -     @staticmethod
 -     def recover_document(document):
 -         if not document.is_paused:
 -             raise DocumentIndexingError()
 -         # update document to be recover
 -         document.is_paused = False
 -         document.paused_by = current_user.id
 -         document.paused_at = time.time()
 - 
 -         db.session.add(document)
 -         db.session.commit()
 -         # delete paused flag
 -         indexing_cache_key = 'document_{}_is_paused'.format(document.id)
 -         redis_client.delete(indexing_cache_key)
 -         # trigger async task
 -         document_indexing_task.delay(document.dataset_id, document.id)
 - 
 -     @staticmethod
 -     def get_documents_position(dataset_id):
 -         document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
 -         if document:
 -             return document.position + 1
 -         else:
 -             return 1
 - 
 -     @staticmethod
 -     def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
 -                                       account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
 -                                       created_from: str = 'web'):
 -         # if dataset is empty, update dataset data_source_type
 -         if not dataset.data_source_type:
 -             dataset.data_source_type = document_data["data_source"]["type"]
 -             db.session.commit()
 - 
 -         if not dataset.indexing_technique:
 -             if 'indexing_technique' not in document_data \
 -                     or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
 -                 raise ValueError("Indexing technique is required")
 - 
 -             dataset.indexing_technique = document_data["indexing_technique"]
 - 
 -         if dataset.indexing_technique == 'high_quality':
 -             IndexBuilder.get_default_service_context(dataset.tenant_id)
 -         documents = []
 -         batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
 -         if 'original_document_id' in document_data and document_data["original_document_id"]:
 -             document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
 -             documents.append(document)
 -         else:
 -             # save process rule
 -             if not dataset_process_rule:
 -                 process_rule = document_data["process_rule"]
 -                 if process_rule["mode"] == "custom":
 -                     dataset_process_rule = DatasetProcessRule(
 -                         dataset_id=dataset.id,
 -                         mode=process_rule["mode"],
 -                         rules=json.dumps(process_rule["rules"]),
 -                         created_by=account.id
 -                     )
 -                 elif process_rule["mode"] == "automatic":
 -                     dataset_process_rule = DatasetProcessRule(
 -                         dataset_id=dataset.id,
 -                         mode=process_rule["mode"],
 -                         rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 -                         created_by=account.id
 -                     )
 -                 db.session.add(dataset_process_rule)
 -                 db.session.commit()
 -             position = DocumentService.get_documents_position(dataset.id)
 -             document_ids = []
 -             if document_data["data_source"]["type"] == "upload_file":
 -                 upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 -                 for file_id in upload_file_list:
 -                     file = db.session.query(UploadFile).filter(
 -                         UploadFile.tenant_id == dataset.tenant_id,
 -                         UploadFile.id == file_id
 -                     ).first()
 - 
 -                     # raise error if file not found
 -                     if not file:
 -                         raise FileNotExistsError()
 - 
 -                     file_name = file.name
 -                     data_source_info = {
 -                         "upload_file_id": file_id,
 -                     }
 -                     document = DocumentService.save_document(dataset, dataset_process_rule.id,
 -                                                              document_data["data_source"]["type"],
 -                                                              data_source_info, created_from, position,
 -                                                              account, file_name, batch)
 -                     db.session.add(document)
 -                     db.session.flush()
 -                     document_ids.append(document.id)
 -                     documents.append(document)
 -                     position += 1
 -             elif document_data["data_source"]["type"] == "notion_import":
 -                 notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 -                 exist_page_ids = []
 -                 exist_document = dict()
 -                 documents = Document.query.filter_by(
 -                     dataset_id=dataset.id,
 -                     tenant_id=current_user.current_tenant_id,
 -                     data_source_type='notion_import',
 -                     enabled=True
 -                 ).all()
 -                 if documents:
 -                     for document in documents:
 -                         data_source_info = json.loads(document.data_source_info)
 -                         exist_page_ids.append(data_source_info['notion_page_id'])
 -                         exist_document[data_source_info['notion_page_id']] = document.id
 -                 for notion_info in notion_info_list:
 -                     workspace_id = notion_info['workspace_id']
 -                     data_source_binding = DataSourceBinding.query.filter(
 -                         db.and_(
 -                             DataSourceBinding.tenant_id == current_user.current_tenant_id,
 -                             DataSourceBinding.provider == 'notion',
 -                             DataSourceBinding.disabled == False,
 -                             DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 -                         )
 -                     ).first()
 -                     if not data_source_binding:
 -                         raise ValueError('Data source binding not found.')
 -                     for page in notion_info['pages']:
 -                         if page['page_id'] not in exist_page_ids:
 -                             data_source_info = {
 -                                 "notion_workspace_id": workspace_id,
 -                                 "notion_page_id": page['page_id'],
 -                                 "notion_page_icon": page['page_icon'],
 -                                 "type": page['type']
 -                             }
 -                             document = DocumentService.save_document(dataset, dataset_process_rule.id,
 -                                                                      document_data["data_source"]["type"],
 -                                                                      data_source_info, created_from, position,
 -                                                                      account, page['page_name'], batch)
 -                             # if page['type'] == 'database':
 -                             #     document.splitting_completed_at = datetime.datetime.utcnow()
 -                             #     document.cleaning_completed_at = datetime.datetime.utcnow()
 -                             #     document.parsing_completed_at = datetime.datetime.utcnow()
 -                             #     document.completed_at = datetime.datetime.utcnow()
 -                             #     document.indexing_status = 'completed'
 -                             #     document.word_count = 0
 -                             #     document.tokens = 0
 -                             #     document.indexing_latency = 0
 -                             db.session.add(document)
 -                             db.session.flush()
 -                             # if page['type'] != 'database':
 -                             document_ids.append(document.id)
 -                             documents.append(document)
 -                             position += 1
 -                         else:
 -                             exist_document.pop(page['page_id'])
 -                 # delete not selected documents
 -                 if len(exist_document) > 0:
 -                     clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
 -             db.session.commit()
 - 
 -             # trigger async task
 -             document_indexing_task.delay(dataset.id, document_ids)
 - 
 -         return documents, batch
 - 
 -     @staticmethod
 -     def save_document(dataset: Dataset, process_rule_id: str, data_source_type: str, data_source_info: dict,
 -                       created_from: str, position: int, account: Account, name: str, batch: str):
 -         document = Document(
 -             tenant_id=dataset.tenant_id,
 -             dataset_id=dataset.id,
 -             position=position,
 -             data_source_type=data_source_type,
 -             data_source_info=json.dumps(data_source_info),
 -             dataset_process_rule_id=process_rule_id,
 -             batch=batch,
 -             name=name,
 -             created_from=created_from,
 -             created_by=account.id,
 -         )
 -         return document
 - 
 -     @staticmethod
 -     def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
 -                                         account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
 -                                         created_from: str = 'web'):
 -         document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
 -         if document.display_status != 'available':
 -             raise ValueError("Document is not available")
 -         # save process rule
 -         if 'process_rule' in document_data and document_data['process_rule']:
 -             process_rule = document_data["process_rule"]
 -             if process_rule["mode"] == "custom":
 -                 dataset_process_rule = DatasetProcessRule(
 -                     dataset_id=dataset.id,
 -                     mode=process_rule["mode"],
 -                     rules=json.dumps(process_rule["rules"]),
 -                     created_by=account.id
 -                 )
 -             elif process_rule["mode"] == "automatic":
 -                 dataset_process_rule = DatasetProcessRule(
 -                     dataset_id=dataset.id,
 -                     mode=process_rule["mode"],
 -                     rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 -                     created_by=account.id
 -                 )
 -             db.session.add(dataset_process_rule)
 -             db.session.commit()
 -             document.dataset_process_rule_id = dataset_process_rule.id
 -         # update document data source
 -         if 'data_source' in document_data and document_data['data_source']:
 -             file_name = ''
 -             data_source_info = {}
 -             if document_data["data_source"]["type"] == "upload_file":
 -                 upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 -                 for file_id in upload_file_list:
 -                     file = db.session.query(UploadFile).filter(
 -                         UploadFile.tenant_id == dataset.tenant_id,
 -                         UploadFile.id == file_id
 -                     ).first()
 - 
 -                     # raise error if file not found
 -                     if not file:
 -                         raise FileNotExistsError()
 - 
 -                     file_name = file.name
 -                     data_source_info = {
 -                         "upload_file_id": file_id,
 -                     }
 -             elif document_data["data_source"]["type"] == "notion_import":
 -                 notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 -                 for notion_info in notion_info_list:
 -                     workspace_id = notion_info['workspace_id']
 -                     data_source_binding = DataSourceBinding.query.filter(
 -                         db.and_(
 -                             DataSourceBinding.tenant_id == current_user.current_tenant_id,
 -                             DataSourceBinding.provider == 'notion',
 -                             DataSourceBinding.disabled == False,
 -                             DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 -                         )
 -                     ).first()
 -                     if not data_source_binding:
 -                         raise ValueError('Data source binding not found.')
 -                     for page in notion_info['pages']:
 -                         data_source_info = {
 -                             "notion_workspace_id": workspace_id,
 -                             "notion_page_id": page['page_id'],
 -                             "notion_page_icon": page['page_icon'],
 -                             "type": page['type']
 -                         }
 -             document.data_source_type = document_data["data_source"]["type"]
 -             document.data_source_info = json.dumps(data_source_info)
 -             document.name = file_name
 -         # update document to be waiting
 -         document.indexing_status = 'waiting'
 -         document.completed_at = None
 -         document.processing_started_at = None
 -         document.parsing_completed_at = None
 -         document.cleaning_completed_at = None
 -         document.splitting_completed_at = None
 -         document.updated_at = datetime.datetime.utcnow()
 -         document.created_from = created_from
 -         db.session.add(document)
 -         db.session.commit()
 -         # update document segment
 -         update_params = {
 -             DocumentSegment.status: 're_segment'
 -         }
 -         DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
 -         db.session.commit()
 -         # trigger async task
 -         document_indexing_update_task.delay(document.dataset_id, document.id)
 - 
 -         return document
 - 
 -     @staticmethod
 -     def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
 -         # save dataset
 -         dataset = Dataset(
 -             tenant_id=tenant_id,
 -             name='',
 -             data_source_type=document_data["data_source"]["type"],
 -             indexing_technique=document_data["indexing_technique"],
 -             created_by=account.id
 -         )
 - 
 -         db.session.add(dataset)
 -         db.session.flush()
 - 
 -         documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
 - 
 -         cut_length = 18
 -         cut_name = documents[0].name[:cut_length]
 -         dataset.name = cut_name + '...'
 -         dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
 -         db.session.commit()
 - 
 -         return dataset, documents, batch
 - 
 -     @classmethod
 -     def document_create_args_validate(cls, args: dict):
 -         if 'original_document_id' not in args or not args['original_document_id']:
 -             DocumentService.data_source_args_validate(args)
 -             DocumentService.process_rule_args_validate(args)
 -         else:
 -             if ('data_source' not in args and not args['data_source'])\
 -                     and ('process_rule' not in args and not args['process_rule']):
 -                 raise ValueError("Data source or Process rule is required")
 -             else:
 -                 if 'data_source' in args and args['data_source']:
 -                     DocumentService.data_source_args_validate(args)
 -                 if 'process_rule' in args and args['process_rule']:
 -                     DocumentService.process_rule_args_validate(args)
 - 
 -     @classmethod
 -     def data_source_args_validate(cls, args: dict):
 -         if 'data_source' not in args or not args['data_source']:
 -             raise ValueError("Data source is required")
 - 
 -         if not isinstance(args['data_source'], dict):
 -             raise ValueError("Data source is invalid")
 - 
 -         if 'type' not in args['data_source'] or not args['data_source']['type']:
 -             raise ValueError("Data source type is required")
 - 
 -         if args['data_source']['type'] not in Document.DATA_SOURCES:
 -             raise ValueError("Data source type is invalid")
 - 
 -         if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
 -             raise ValueError("Data source info is required")
 - 
 -         if args['data_source']['type'] == 'upload_file':
 -             if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list']['file_info_list']:
 -                 raise ValueError("File source info is required")
 -         if args['data_source']['type'] == 'notion_import':
 -             if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list']['notion_info_list']:
 -                 raise ValueError("Notion source info is required")
 - 
 -     @classmethod
 -     def process_rule_args_validate(cls, args: dict):
 -         if 'process_rule' not in args or not args['process_rule']:
 -             raise ValueError("Process rule is required")
 - 
 -         if not isinstance(args['process_rule'], dict):
 -             raise ValueError("Process rule is invalid")
 - 
 -         if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
 -             raise ValueError("Process rule mode is required")
 - 
 -         if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
 -             raise ValueError("Process rule mode is invalid")
 - 
 -         if args['process_rule']['mode'] == 'automatic':
 -             args['process_rule']['rules'] = {}
 -         else:
 -             if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
 -                 raise ValueError("Process rule rules is required")
 - 
 -             if not isinstance(args['process_rule']['rules'], dict):
 -                 raise ValueError("Process rule rules is invalid")
 - 
 -             if 'pre_processing_rules' not in args['process_rule']['rules'] \
 -                     or args['process_rule']['rules']['pre_processing_rules'] is None:
 -                 raise ValueError("Process rule pre_processing_rules is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
 -                 raise ValueError("Process rule pre_processing_rules is invalid")
 - 
 -             unique_pre_processing_rule_dicts = {}
 -             for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
 -                 if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
 -                     raise ValueError("Process rule pre_processing_rules id is required")
 - 
 -                 if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 -                     raise ValueError("Process rule pre_processing_rules id is invalid")
 - 
 -                 if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
 -                     raise ValueError("Process rule pre_processing_rules enabled is required")
 - 
 -                 if not isinstance(pre_processing_rule['enabled'], bool):
 -                     raise ValueError("Process rule pre_processing_rules enabled is invalid")
 - 
 -                 unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
 - 
 -             args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
 - 
 -             if 'segmentation' not in args['process_rule']['rules'] \
 -                     or args['process_rule']['rules']['segmentation'] is None:
 -                 raise ValueError("Process rule segmentation is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation'], dict):
 -                 raise ValueError("Process rule segmentation is invalid")
 - 
 -             if 'separator' not in args['process_rule']['rules']['segmentation'] \
 -                     or not args['process_rule']['rules']['segmentation']['separator']:
 -                 raise ValueError("Process rule segmentation separator is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
 -                 raise ValueError("Process rule segmentation separator is invalid")
 - 
 -             if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
 -                     or not args['process_rule']['rules']['segmentation']['max_tokens']:
 -                 raise ValueError("Process rule segmentation max_tokens is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
 -                 raise ValueError("Process rule segmentation max_tokens is invalid")
 - 
 -     @classmethod
 -     def estimate_args_validate(cls, args: dict):
 -         if 'info_list' not in args or not args['info_list']:
 -             raise ValueError("Data source info is required")
 - 
 -         if not isinstance(args['info_list'], dict):
 -             raise ValueError("Data info is invalid")
 - 
 -         if 'process_rule' not in args or not args['process_rule']:
 -             raise ValueError("Process rule is required")
 - 
 -         if not isinstance(args['process_rule'], dict):
 -             raise ValueError("Process rule is invalid")
 - 
 -         if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
 -             raise ValueError("Process rule mode is required")
 - 
 -         if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
 -             raise ValueError("Process rule mode is invalid")
 - 
 -         if args['process_rule']['mode'] == 'automatic':
 -             args['process_rule']['rules'] = {}
 -         else:
 -             if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
 -                 raise ValueError("Process rule rules is required")
 - 
 -             if not isinstance(args['process_rule']['rules'], dict):
 -                 raise ValueError("Process rule rules is invalid")
 - 
 -             if 'pre_processing_rules' not in args['process_rule']['rules'] \
 -                     or args['process_rule']['rules']['pre_processing_rules'] is None:
 -                 raise ValueError("Process rule pre_processing_rules is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
 -                 raise ValueError("Process rule pre_processing_rules is invalid")
 - 
 -             unique_pre_processing_rule_dicts = {}
 -             for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
 -                 if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
 -                     raise ValueError("Process rule pre_processing_rules id is required")
 - 
 -                 if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 -                     raise ValueError("Process rule pre_processing_rules id is invalid")
 - 
 -                 if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
 -                     raise ValueError("Process rule pre_processing_rules enabled is required")
 - 
 -                 if not isinstance(pre_processing_rule['enabled'], bool):
 -                     raise ValueError("Process rule pre_processing_rules enabled is invalid")
 - 
 -                 unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
 - 
 -             args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
 - 
 -             if 'segmentation' not in args['process_rule']['rules'] \
 -                     or args['process_rule']['rules']['segmentation'] is None:
 -                 raise ValueError("Process rule segmentation is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation'], dict):
 -                 raise ValueError("Process rule segmentation is invalid")
 - 
 -             if 'separator' not in args['process_rule']['rules']['segmentation'] \
 -                     or not args['process_rule']['rules']['segmentation']['separator']:
 -                 raise ValueError("Process rule segmentation separator is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
 -                 raise ValueError("Process rule segmentation separator is invalid")
 - 
 -             if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
 -                     or not args['process_rule']['rules']['segmentation']['max_tokens']:
 -                 raise ValueError("Process rule segmentation max_tokens is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
 -                 raise ValueError("Process rule segmentation max_tokens is invalid")
 
 
  |