| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 | 
                        - from models.dataset import Dataset
 - import services.dataset_service
 - from controllers.service_api import api
 - from controllers.service_api.dataset.error import DatasetNameDuplicateError
 - from controllers.service_api.wraps import DatasetApiResource
 - from core.model_runtime.entities.model_entities import ModelType
 - from core.provider_manager import ProviderManager
 - from fields.dataset_fields import dataset_detail_fields
 - from flask import request
 - from flask_restful import marshal, reqparse
 - from libs.login import current_user
 - from services.dataset_service import DatasetService
 - 
 - 
 - def _validate_name(name):
 -     if not name or len(name) < 1 or len(name) > 40:
 -         raise ValueError('Name must be between 1 to 40 characters.')
 -     return name
 - 
 - 
 - class DatasetApi(DatasetApiResource):
 -     """Resource for get datasets."""
 - 
 -     def get(self, tenant_id):
 -         page = request.args.get('page', default=1, type=int)
 -         limit = request.args.get('limit', default=20, type=int)
 -         provider = request.args.get('provider', default="vendor")
 -         datasets, total = DatasetService.get_datasets(page, limit, provider,
 -                                                       tenant_id, current_user)
 -         # check embedding setting
 -         provider_manager = ProviderManager()
 -         configurations = provider_manager.get_configurations(
 -             tenant_id=current_user.current_tenant_id
 -         )
 - 
 -         embedding_models = configurations.get_models(
 -             model_type=ModelType.TEXT_EMBEDDING,
 -             only_active=True
 -         )
 - 
 -         model_names = []
 -         for embedding_model in embedding_models:
 -             model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
 - 
 -         data = marshal(datasets, dataset_detail_fields)
 -         for item in data:
 -             if item['indexing_technique'] == 'high_quality':
 -                 item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
 -                 if item_model in model_names:
 -                     item['embedding_available'] = True
 -                 else:
 -                     item['embedding_available'] = False
 -             else:
 -                 item['embedding_available'] = True
 -         response = {
 -             'data': data,
 -             'has_more': len(datasets) == limit,
 -             'limit': limit,
 -             'total': total,
 -             'page': page
 -         }
 -         return response, 200
 - 
 -     """Resource for datasets."""
 - 
 -     def post(self, tenant_id):
 -         parser = reqparse.RequestParser()
 -         parser.add_argument('name', nullable=False, required=True,
 -                             help='type is required. Name must be between 1 to 40 characters.',
 -                             type=_validate_name)
 -         parser.add_argument('indexing_technique', type=str, location='json',
 -                             choices=Dataset.INDEXING_TECHNIQUE_LIST,
 -                             help='Invalid indexing technique.')
 -         args = parser.parse_args()
 - 
 -         try:
 -             dataset = DatasetService.create_empty_dataset(
 -                 tenant_id=tenant_id,
 -                 name=args['name'],
 -                 indexing_technique=args['indexing_technique'],
 -                 account=current_user
 -             )
 -         except services.errors.dataset.DatasetNameDuplicateError:
 -             raise DatasetNameDuplicateError()
 - 
 -         return marshal(dataset, dataset_detail_fields), 200
 - 
 - 
 - api.add_resource(DatasetApi, '/datasets')
 - 
 
 
  |