| 
                        12345678910111213141516171819202122232425262728293031323334353637 | 
                        - import re
 - 
 - from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, AIMessagePromptTemplate
 - from langchain.schema import BaseMessage
 - 
 - from core.prompt.prompt_template import OutLinePromptTemplate
 - 
 - 
 - class PromptBuilder:
 -     @classmethod
 -     def to_system_message(cls, prompt_content: str, inputs: dict) -> BaseMessage:
 -         prompt_template = OutLinePromptTemplate.from_template(prompt_content)
 -         system_prompt_template = SystemMessagePromptTemplate(prompt=prompt_template)
 -         prompt_inputs = {k: inputs[k] for k in system_prompt_template.input_variables if k in inputs}
 -         system_message = system_prompt_template.format(**prompt_inputs)
 -         return system_message
 - 
 -     @classmethod
 -     def to_ai_message(cls, prompt_content: str, inputs: dict) -> BaseMessage:
 -         prompt_template = OutLinePromptTemplate.from_template(prompt_content)
 -         ai_prompt_template = AIMessagePromptTemplate(prompt=prompt_template)
 -         prompt_inputs = {k: inputs[k] for k in ai_prompt_template.input_variables if k in inputs}
 -         ai_message = ai_prompt_template.format(**prompt_inputs)
 -         return ai_message
 - 
 -     @classmethod
 -     def to_human_message(cls, prompt_content: str, inputs: dict) -> BaseMessage:
 -         prompt_template = OutLinePromptTemplate.from_template(prompt_content)
 -         human_prompt_template = HumanMessagePromptTemplate(prompt=prompt_template)
 -         human_message = human_prompt_template.format(**inputs)
 -         return human_message
 - 
 -     @classmethod
 -     def process_template(cls, template: str):
 -         processed_template = re.sub(r'\{([a-zA-Z_]\w+?)\}', r'\1', template)
 -         processed_template = re.sub(r'\{\{([a-zA-Z_]\w+?)\}\}', r'{\1}', processed_template)
 -         return processed_template
 
 
  |