- import base64
 - import logging
 - from typing import Any, Optional, cast
 - 
 - import numpy as np
 - from sqlalchemy.exc import IntegrityError
 - 
 - from configs import dify_config
 - from core.entities.embedding_type import EmbeddingInputType
 - from core.model_manager import ModelInstance
 - from core.model_runtime.entities.model_entities import ModelPropertyKey
 - from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
 - from core.rag.embedding.embedding_base import Embeddings
 - from extensions.ext_database import db
 - from extensions.ext_redis import redis_client
 - from libs import helper
 - from models.dataset import Embedding
 - 
 - logger = logging.getLogger(__name__)
 - 
 - 
 - class CacheEmbedding(Embeddings):
 -     def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None:
 -         self._model_instance = model_instance
 -         self._user = user
 - 
 -     def embed_documents(self, texts: list[str]) -> list[list[float]]:
 -         """Embed search docs in batches of 10."""
 -         # use doc embedding cache or store if not exists
 -         text_embeddings: list[Any] = [None for _ in range(len(texts))]
 -         embedding_queue_indices = []
 -         for i, text in enumerate(texts):
 -             hash = helper.generate_text_hash(text)
 -             embedding = (
 -                 db.session.query(Embedding)
 -                 .filter_by(
 -                     model_name=self._model_instance.model, hash=hash, provider_name=self._model_instance.provider
 -                 )
 -                 .first()
 -             )
 -             if embedding:
 -                 text_embeddings[i] = embedding.get_embedding()
 -             else:
 -                 embedding_queue_indices.append(i)
 -         if embedding_queue_indices:
 -             embedding_queue_texts = [texts[i] for i in embedding_queue_indices]
 -             embedding_queue_embeddings = []
 -             try:
 -                 model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
 -                 model_schema = model_type_instance.get_model_schema(
 -                     self._model_instance.model, self._model_instance.credentials
 -                 )
 -                 max_chunks = (
 -                     model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS]
 -                     if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties
 -                     else 1
 -                 )
 -                 for i in range(0, len(embedding_queue_texts), max_chunks):
 -                     batch_texts = embedding_queue_texts[i : i + max_chunks]
 - 
 -                     embedding_result = self._model_instance.invoke_text_embedding(
 -                         texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT
 -                     )
 - 
 -                     for vector in embedding_result.embeddings:
 -                         try:
 -                             # FIXME: type ignore for numpy here
 -                             normalized_embedding = (vector / np.linalg.norm(vector)).tolist()  # type: ignore
 -                             # stackoverflow best way: https://stackoverflow.com/questions/20319813/how-to-check-list-containing-nan
 -                             if np.isnan(normalized_embedding).any():
 -                                 # for issue #11827  float values are not json compliant
 -                                 logger.warning(f"Normalized embedding is nan: {normalized_embedding}")
 -                                 continue
 -                             embedding_queue_embeddings.append(normalized_embedding)
 -                         except IntegrityError:
 -                             db.session.rollback()
 -                         except Exception:
 -                             logging.exception("Failed transform embedding")
 -                 cache_embeddings = []
 -                 try:
 -                     for i, n_embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
 -                         text_embeddings[i] = n_embedding
 -                         hash = helper.generate_text_hash(texts[i])
 -                         if hash not in cache_embeddings:
 -                             embedding_cache = Embedding(
 -                                 model_name=self._model_instance.model,
 -                                 hash=hash,
 -                                 provider_name=self._model_instance.provider,
 -                             )
 -                             embedding_cache.set_embedding(n_embedding)
 -                             db.session.add(embedding_cache)
 -                             cache_embeddings.append(hash)
 -                     db.session.commit()
 -                 except IntegrityError:
 -                     db.session.rollback()
 -             except Exception as ex:
 -                 db.session.rollback()
 -                 logger.exception("Failed to embed documents: %s")
 -                 raise ex
 - 
 -         return text_embeddings
 - 
 -     def embed_query(self, text: str) -> list[float]:
 -         """Embed query text."""
 -         # use doc embedding cache or store if not exists
 -         hash = helper.generate_text_hash(text)
 -         embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{hash}"
 -         embedding = redis_client.get(embedding_cache_key)
 -         if embedding:
 -             redis_client.expire(embedding_cache_key, 600)
 -             decoded_embedding = np.frombuffer(base64.b64decode(embedding), dtype="float")
 -             return [float(x) for x in decoded_embedding]
 -         try:
 -             embedding_result = self._model_instance.invoke_text_embedding(
 -                 texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY
 -             )
 - 
 -             embedding_results = embedding_result.embeddings[0]
 -             # FIXME: type ignore for numpy here
 -             embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()  # type: ignore
 -             if np.isnan(embedding_results).any():
 -                 raise ValueError("Normalized embedding is nan please try again")
 -         except Exception as ex:
 -             if dify_config.DEBUG:
 -                 logging.exception(f"Failed to embed query text '{text[:10]}...({len(text)} chars)'")
 -             raise ex
 - 
 -         try:
 -             # encode embedding to base64
 -             embedding_vector = np.array(embedding_results)
 -             vector_bytes = embedding_vector.tobytes()
 -             # Transform to Base64
 -             encoded_vector = base64.b64encode(vector_bytes)
 -             # Transform to string
 -             encoded_str = encoded_vector.decode("utf-8")
 -             redis_client.setex(embedding_cache_key, 600, encoded_str)
 -         except Exception as ex:
 -             if dify_config.DEBUG:
 -                 logging.exception(f"Failed to add embedding to redis for the text '{text[:10]}...({len(text)} chars)'")
 -             raise ex
 - 
 -         return embedding_results
 
 
  |