| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 | 
                        - import logging
 - import time
 - from typing import List
 - 
 - import numpy as np
 - from llama_index.data_structs.node_v2 import NodeWithScore
 - from llama_index.indices.query.schema import QueryBundle
 - from llama_index.indices.vector_store import GPTVectorStoreIndexQuery
 - from sklearn.manifold import TSNE
 - 
 - from core.docstore.empty_docstore import EmptyDocumentStore
 - from core.index.vector_index import VectorIndex
 - from extensions.ext_database import db
 - from models.account import Account
 - from models.dataset import Dataset, DocumentSegment, DatasetQuery
 - from services.errors.index import IndexNotInitializedError
 - 
 - 
 - class HitTestingService:
 -     @classmethod
 -     def retrieve(cls, dataset: Dataset, query: str, account: Account, limit: int = 10) -> dict:
 -         index = VectorIndex(dataset=dataset).query_index
 - 
 -         if not index:
 -             raise IndexNotInitializedError()
 - 
 -         index_query = GPTVectorStoreIndexQuery(
 -             index_struct=index.index_struct,
 -             service_context=index.service_context,
 -             vector_store=index.query_context.get('vector_store'),
 -             docstore=EmptyDocumentStore(),
 -             response_synthesizer=None,
 -             similarity_top_k=limit
 -         )
 - 
 -         query_bundle = QueryBundle(
 -             query_str=query,
 -             custom_embedding_strs=[query],
 -         )
 - 
 -         query_bundle.embedding = index.service_context.embed_model.get_agg_embedding_from_queries(
 -             query_bundle.embedding_strs
 -         )
 - 
 -         start = time.perf_counter()
 -         nodes = index_query.retrieve(query_bundle=query_bundle)
 -         end = time.perf_counter()
 -         logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
 - 
 -         dataset_query = DatasetQuery(
 -             dataset_id=dataset.id,
 -             content=query,
 -             source='hit_testing',
 -             created_by_role='account',
 -             created_by=account.id
 -         )
 - 
 -         db.session.add(dataset_query)
 -         db.session.commit()
 - 
 -         return cls.compact_retrieve_response(dataset, query_bundle, nodes)
 - 
 -     @classmethod
 -     def compact_retrieve_response(cls, dataset: Dataset, query_bundle: QueryBundle, nodes: List[NodeWithScore]):
 -         embeddings = [
 -             query_bundle.embedding
 -         ]
 - 
 -         for node in nodes:
 -             embeddings.append(node.node.embedding)
 - 
 -         tsne_position_data = cls.get_tsne_positions_from_embeddings(embeddings)
 - 
 -         query_position = tsne_position_data.pop(0)
 - 
 -         i = 0
 -         records = []
 -         for node in nodes:
 -             index_node_id = node.node.doc_id
 - 
 -             segment = db.session.query(DocumentSegment).filter(
 -                 DocumentSegment.dataset_id == dataset.id,
 -                 DocumentSegment.enabled == True,
 -                 DocumentSegment.status == 'completed',
 -                 DocumentSegment.index_node_id == index_node_id
 -             ).first()
 - 
 -             if not segment:
 -                 i += 1
 -                 continue
 - 
 -             record = {
 -                 "segment": segment,
 -                 "score": node.score,
 -                 "tsne_position": tsne_position_data[i]
 -             }
 - 
 -             records.append(record)
 - 
 -             i += 1
 - 
 -         return {
 -             "query": {
 -                 "content": query_bundle.query_str,
 -                 "tsne_position": query_position,
 -             },
 -             "records": records
 -         }
 - 
 -     @classmethod
 -     def get_tsne_positions_from_embeddings(cls, embeddings: list):
 -         embedding_length = len(embeddings)
 -         if embedding_length <= 1:
 -             return [{'x': 0, 'y': 0}]
 - 
 -         concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
 -         # concatenate_data = np.concatenate(embeddings)
 - 
 -         perplexity = embedding_length / 2 + 1
 -         if perplexity >= embedding_length:
 -             perplexity = max(embedding_length - 1, 1)
 - 
 -         tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
 -         data_tsne = tsne.fit_transform(concatenate_data)
 - 
 -         tsne_position_data = []
 -         for i in range(len(data_tsne)):
 -             tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
 - 
 -         return tsne_position_data
 
 
  |