| 
                        12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016 | 
                        - import json
 - import logging
 - import datetime
 - import time
 - import random
 - import uuid
 - from typing import Optional, List
 - 
 - from flask import current_app
 - from sqlalchemy import func
 - 
 - from core.index.index import IndexBuilder
 - from core.model_providers.model_factory import ModelFactory
 - from extensions.ext_redis import redis_client
 - from flask_login import current_user
 - 
 - from events.dataset_event import dataset_was_deleted
 - from events.document_event import document_was_deleted
 - from extensions.ext_database import db
 - from libs import helper
 - from models.account import Account
 - from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment
 - from models.model import UploadFile
 - from models.source import DataSourceBinding
 - from services.errors.account import NoPermissionError
 - from services.errors.dataset import DatasetNameDuplicateError
 - from services.errors.document import DocumentIndexingError
 - from services.errors.file import FileNotExistsError
 - from services.vector_service import VectorService
 - from tasks.clean_notion_document_task import clean_notion_document_task
 - from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
 - from tasks.document_indexing_task import document_indexing_task
 - from tasks.document_indexing_update_task import document_indexing_update_task
 - from tasks.create_segment_to_index_task import create_segment_to_index_task
 - from tasks.update_segment_index_task import update_segment_index_task
 - from tasks.recover_document_indexing_task import recover_document_indexing_task
 - from tasks.update_segment_keyword_index_task import update_segment_keyword_index_task
 - from tasks.delete_segment_from_index_task import delete_segment_from_index_task
 - 
 - 
 - class DatasetService:
 - 
 -     @staticmethod
 -     def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
 -         if user:
 -             permission_filter = db.or_(Dataset.created_by == user.id,
 -                                        Dataset.permission == 'all_team_members')
 -         else:
 -             permission_filter = Dataset.permission == 'all_team_members'
 -         datasets = Dataset.query.filter(
 -             db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
 -             .order_by(Dataset.created_at.desc()) \
 -             .paginate(
 -             page=page,
 -             per_page=per_page,
 -             max_per_page=100,
 -             error_out=False
 -         )
 - 
 -         return datasets.items, datasets.total
 - 
 -     @staticmethod
 -     def get_process_rules(dataset_id):
 -         # get the latest process rule
 -         dataset_process_rule = db.session.query(DatasetProcessRule). \
 -             filter(DatasetProcessRule.dataset_id == dataset_id). \
 -             order_by(DatasetProcessRule.created_at.desc()). \
 -             limit(1). \
 -             one_or_none()
 -         if dataset_process_rule:
 -             mode = dataset_process_rule.mode
 -             rules = dataset_process_rule.rules_dict
 -         else:
 -             mode = DocumentService.DEFAULT_RULES['mode']
 -             rules = DocumentService.DEFAULT_RULES['rules']
 -         return {
 -             'mode': mode,
 -             'rules': rules
 -         }
 - 
 -     @staticmethod
 -     def get_datasets_by_ids(ids, tenant_id):
 -         datasets = Dataset.query.filter(Dataset.id.in_(ids),
 -                                         Dataset.tenant_id == tenant_id).paginate(
 -             page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
 -         return datasets.items, datasets.total
 - 
 -     @staticmethod
 -     def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
 -         # check if dataset name already exists
 -         if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
 -             raise DatasetNameDuplicateError(
 -                 f'Dataset with name {name} already exists.')
 -         embedding_model = ModelFactory.get_embedding_model(
 -             tenant_id=current_user.current_tenant_id
 -         )
 -         dataset = Dataset(name=name, indexing_technique=indexing_technique)
 -         # dataset = Dataset(name=name, provider=provider, config=config)
 -         dataset.created_by = account.id
 -         dataset.updated_by = account.id
 -         dataset.tenant_id = tenant_id
 -         dataset.embedding_model_provider = embedding_model.model_provider.provider_name
 -         dataset.embedding_model = embedding_model.name
 -         db.session.add(dataset)
 -         db.session.commit()
 -         return dataset
 - 
 -     @staticmethod
 -     def get_dataset(dataset_id):
 -         dataset = Dataset.query.filter_by(
 -             id=dataset_id
 -         ).first()
 -         if dataset is None:
 -             return None
 -         else:
 -             return dataset
 - 
 -     @staticmethod
 -     def update_dataset(dataset_id, data, user):
 -         dataset = DatasetService.get_dataset(dataset_id)
 -         DatasetService.check_dataset_permission(dataset, user)
 -         if dataset.indexing_technique != data['indexing_technique']:
 -             # if update indexing_technique
 -             if data['indexing_technique'] == 'economy':
 -                 deal_dataset_vector_index_task.delay(dataset_id, 'remove')
 -             elif data['indexing_technique'] == 'high_quality':
 -                 deal_dataset_vector_index_task.delay(dataset_id, 'add')
 -         filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
 - 
 -         filtered_data['updated_by'] = user.id
 -         filtered_data['updated_at'] = datetime.datetime.now()
 - 
 -         dataset.query.filter_by(id=dataset_id).update(filtered_data)
 - 
 -         db.session.commit()
 - 
 -         return dataset
 - 
 -     @staticmethod
 -     def delete_dataset(dataset_id, user):
 -         # todo: cannot delete dataset if it is being processed
 - 
 -         dataset = DatasetService.get_dataset(dataset_id)
 - 
 -         if dataset is None:
 -             return False
 - 
 -         DatasetService.check_dataset_permission(dataset, user)
 - 
 -         dataset_was_deleted.send(dataset)
 - 
 -         db.session.delete(dataset)
 -         db.session.commit()
 -         return True
 - 
 -     @staticmethod
 -     def check_dataset_permission(dataset, user):
 -         if dataset.tenant_id != user.current_tenant_id:
 -             logging.debug(
 -                 f'User {user.id} does not have permission to access dataset {dataset.id}')
 -             raise NoPermissionError(
 -                 'You do not have permission to access this dataset.')
 -         if dataset.permission == 'only_me' and dataset.created_by != user.id:
 -             logging.debug(
 -                 f'User {user.id} does not have permission to access dataset {dataset.id}')
 -             raise NoPermissionError(
 -                 'You do not have permission to access this dataset.')
 - 
 -     @staticmethod
 -     def get_dataset_queries(dataset_id: str, page: int, per_page: int):
 -         dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
 -             .order_by(db.desc(DatasetQuery.created_at)) \
 -             .paginate(
 -             page=page, per_page=per_page, max_per_page=100, error_out=False
 -         )
 -         return dataset_queries.items, dataset_queries.total
 - 
 -     @staticmethod
 -     def get_related_apps(dataset_id: str):
 -         return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
 -             .order_by(db.desc(AppDatasetJoin.created_at)).all()
 - 
 - 
 - class DocumentService:
 -     DEFAULT_RULES = {
 -         'mode': 'custom',
 -         'rules': {
 -             'pre_processing_rules': [
 -                 {'id': 'remove_extra_spaces', 'enabled': True},
 -                 {'id': 'remove_urls_emails', 'enabled': False}
 -             ],
 -             'segmentation': {
 -                 'delimiter': '\n',
 -                 'max_tokens': 500
 -             }
 -         }
 -     }
 - 
 -     DOCUMENT_METADATA_SCHEMA = {
 -         "book": {
 -             "title": str,
 -             "language": str,
 -             "author": str,
 -             "publisher": str,
 -             "publication_date": str,
 -             "isbn": str,
 -             "category": str,
 -         },
 -         "web_page": {
 -             "title": str,
 -             "url": str,
 -             "language": str,
 -             "publish_date": str,
 -             "author/publisher": str,
 -             "topic/keywords": str,
 -             "description": str,
 -         },
 -         "paper": {
 -             "title": str,
 -             "language": str,
 -             "author": str,
 -             "publish_date": str,
 -             "journal/conference_name": str,
 -             "volume/issue/page_numbers": str,
 -             "doi": str,
 -             "topic/keywords": str,
 -             "abstract": str,
 -         },
 -         "social_media_post": {
 -             "platform": str,
 -             "author/username": str,
 -             "publish_date": str,
 -             "post_url": str,
 -             "topic/tags": str,
 -         },
 -         "wikipedia_entry": {
 -             "title": str,
 -             "language": str,
 -             "web_page_url": str,
 -             "last_edit_date": str,
 -             "editor/contributor": str,
 -             "summary/introduction": str,
 -         },
 -         "personal_document": {
 -             "title": str,
 -             "author": str,
 -             "creation_date": str,
 -             "last_modified_date": str,
 -             "document_type": str,
 -             "tags/category": str,
 -         },
 -         "business_document": {
 -             "title": str,
 -             "author": str,
 -             "creation_date": str,
 -             "last_modified_date": str,
 -             "document_type": str,
 -             "department/team": str,
 -         },
 -         "im_chat_log": {
 -             "chat_platform": str,
 -             "chat_participants/group_name": str,
 -             "start_date": str,
 -             "end_date": str,
 -             "summary": str,
 -         },
 -         "synced_from_notion": {
 -             "title": str,
 -             "language": str,
 -             "author/creator": str,
 -             "creation_date": str,
 -             "last_modified_date": str,
 -             "notion_page_link": str,
 -             "category/tags": str,
 -             "description": str,
 -         },
 -         "synced_from_github": {
 -             "repository_name": str,
 -             "repository_description": str,
 -             "repository_owner/organization": str,
 -             "code_filename": str,
 -             "code_file_path": str,
 -             "programming_language": str,
 -             "github_link": str,
 -             "open_source_license": str,
 -             "commit_date": str,
 -             "commit_author": str,
 -         },
 -         "others": dict
 -     }
 - 
 -     @staticmethod
 -     def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
 -         document = db.session.query(Document).filter(
 -             Document.id == document_id,
 -             Document.dataset_id == dataset_id
 -         ).first()
 - 
 -         return document
 - 
 -     @staticmethod
 -     def get_document_by_id(document_id: str) -> Optional[Document]:
 -         document = db.session.query(Document).filter(
 -             Document.id == document_id
 -         ).first()
 - 
 -         return document
 - 
 -     @staticmethod
 -     def get_document_by_dataset_id(dataset_id: str) -> List[Document]:
 -         documents = db.session.query(Document).filter(
 -             Document.dataset_id == dataset_id,
 -             Document.enabled == True
 -         ).all()
 - 
 -         return documents
 - 
 -     @staticmethod
 -     def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:
 -         documents = db.session.query(Document).filter(
 -             Document.batch == batch,
 -             Document.dataset_id == dataset_id,
 -             Document.tenant_id == current_user.current_tenant_id
 -         ).all()
 - 
 -         return documents
 - 
 -     @staticmethod
 -     def get_document_file_detail(file_id: str):
 -         file_detail = db.session.query(UploadFile). \
 -             filter(UploadFile.id == file_id). \
 -             one_or_none()
 -         return file_detail
 - 
 -     @staticmethod
 -     def check_archived(document):
 -         if document.archived:
 -             return True
 -         else:
 -             return False
 - 
 -     @staticmethod
 -     def delete_document(document):
 -         if document.indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:
 -             raise DocumentIndexingError()
 - 
 -         # trigger document_was_deleted signal
 -         document_was_deleted.send(document.id, dataset_id=document.dataset_id)
 - 
 -         db.session.delete(document)
 -         db.session.commit()
 - 
 -     @staticmethod
 -     def pause_document(document):
 -         if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
 -             raise DocumentIndexingError()
 -         # update document to be paused
 -         document.is_paused = True
 -         document.paused_by = current_user.id
 -         document.paused_at = datetime.datetime.utcnow()
 - 
 -         db.session.add(document)
 -         db.session.commit()
 -         # set document paused flag
 -         indexing_cache_key = 'document_{}_is_paused'.format(document.id)
 -         redis_client.setnx(indexing_cache_key, "True")
 - 
 -     @staticmethod
 -     def recover_document(document):
 -         if not document.is_paused:
 -             raise DocumentIndexingError()
 -         # update document to be recover
 -         document.is_paused = False
 -         document.paused_by = None
 -         document.paused_at = None
 - 
 -         db.session.add(document)
 -         db.session.commit()
 -         # delete paused flag
 -         indexing_cache_key = 'document_{}_is_paused'.format(document.id)
 -         redis_client.delete(indexing_cache_key)
 -         # trigger async task
 -         recover_document_indexing_task.delay(document.dataset_id, document.id)
 - 
 -     @staticmethod
 -     def get_documents_position(dataset_id):
 -         document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
 -         if document:
 -             return document.position + 1
 -         else:
 -             return 1
 - 
 -     @staticmethod
 -     def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
 -                                       account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
 -                                       created_from: str = 'web'):
 - 
 -         # check document limit
 -         if current_app.config['EDITION'] == 'CLOUD':
 -             count = 0
 -             if document_data["data_source"]["type"] == "upload_file":
 -                 upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 -                 count = len(upload_file_list)
 -             elif document_data["data_source"]["type"] == "notion_import":
 -                 notion_page_list = document_data["data_source"]['info_list']['notion_info_list']['pages']
 -                 count = len(notion_page_list)
 -             documents_count = DocumentService.get_tenant_documents_count()
 -             total_count = documents_count + count
 -             tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
 -             if total_count > tenant_document_count:
 -                 raise ValueError(f"over document limit {tenant_document_count}.")
 -         # if dataset is empty, update dataset data_source_type
 -         if not dataset.data_source_type:
 -             dataset.data_source_type = document_data["data_source"]["type"]
 -             db.session.commit()
 - 
 -         if not dataset.indexing_technique:
 -             if 'indexing_technique' not in document_data \
 -                     or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
 -                 raise ValueError("Indexing technique is required")
 - 
 -             dataset.indexing_technique = document_data["indexing_technique"]
 - 
 -         documents = []
 -         batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
 -         if 'original_document_id' in document_data and document_data["original_document_id"]:
 -             document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
 -             documents.append(document)
 -         else:
 -             # save process rule
 -             if not dataset_process_rule:
 -                 process_rule = document_data["process_rule"]
 -                 if process_rule["mode"] == "custom":
 -                     dataset_process_rule = DatasetProcessRule(
 -                         dataset_id=dataset.id,
 -                         mode=process_rule["mode"],
 -                         rules=json.dumps(process_rule["rules"]),
 -                         created_by=account.id
 -                     )
 -                 elif process_rule["mode"] == "automatic":
 -                     dataset_process_rule = DatasetProcessRule(
 -                         dataset_id=dataset.id,
 -                         mode=process_rule["mode"],
 -                         rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 -                         created_by=account.id
 -                     )
 -                 db.session.add(dataset_process_rule)
 -                 db.session.commit()
 -             position = DocumentService.get_documents_position(dataset.id)
 -             document_ids = []
 -             if document_data["data_source"]["type"] == "upload_file":
 -                 upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 -                 for file_id in upload_file_list:
 -                     file = db.session.query(UploadFile).filter(
 -                         UploadFile.tenant_id == dataset.tenant_id,
 -                         UploadFile.id == file_id
 -                     ).first()
 - 
 -                     # raise error if file not found
 -                     if not file:
 -                         raise FileNotExistsError()
 - 
 -                     file_name = file.name
 -                     data_source_info = {
 -                         "upload_file_id": file_id,
 -                     }
 -                     document = DocumentService.save_document(dataset, dataset_process_rule.id,
 -                                                              document_data["data_source"]["type"],
 -                                                              document_data["doc_form"],
 -                                                              document_data["doc_language"],
 -                                                              data_source_info, created_from, position,
 -                                                              account, file_name, batch)
 -                     db.session.add(document)
 -                     db.session.flush()
 -                     document_ids.append(document.id)
 -                     documents.append(document)
 -                     position += 1
 -             elif document_data["data_source"]["type"] == "notion_import":
 -                 notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 -                 exist_page_ids = []
 -                 exist_document = dict()
 -                 documents = Document.query.filter_by(
 -                     dataset_id=dataset.id,
 -                     tenant_id=current_user.current_tenant_id,
 -                     data_source_type='notion_import',
 -                     enabled=True
 -                 ).all()
 -                 if documents:
 -                     for document in documents:
 -                         data_source_info = json.loads(document.data_source_info)
 -                         exist_page_ids.append(data_source_info['notion_page_id'])
 -                         exist_document[data_source_info['notion_page_id']] = document.id
 -                 for notion_info in notion_info_list:
 -                     workspace_id = notion_info['workspace_id']
 -                     data_source_binding = DataSourceBinding.query.filter(
 -                         db.and_(
 -                             DataSourceBinding.tenant_id == current_user.current_tenant_id,
 -                             DataSourceBinding.provider == 'notion',
 -                             DataSourceBinding.disabled == False,
 -                             DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 -                         )
 -                     ).first()
 -                     if not data_source_binding:
 -                         raise ValueError('Data source binding not found.')
 -                     for page in notion_info['pages']:
 -                         if page['page_id'] not in exist_page_ids:
 -                             data_source_info = {
 -                                 "notion_workspace_id": workspace_id,
 -                                 "notion_page_id": page['page_id'],
 -                                 "notion_page_icon": page['page_icon'],
 -                                 "type": page['type']
 -                             }
 -                             document = DocumentService.save_document(dataset, dataset_process_rule.id,
 -                                                                      document_data["data_source"]["type"],
 -                                                                      document_data["doc_form"],
 -                                                                      document_data["doc_language"],
 -                                                                      data_source_info, created_from, position,
 -                                                                      account, page['page_name'], batch)
 -                             db.session.add(document)
 -                             db.session.flush()
 -                             document_ids.append(document.id)
 -                             documents.append(document)
 -                             position += 1
 -                         else:
 -                             exist_document.pop(page['page_id'])
 -                 # delete not selected documents
 -                 if len(exist_document) > 0:
 -                     clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
 -             db.session.commit()
 - 
 -             # trigger async task
 -             document_indexing_task.delay(dataset.id, document_ids)
 - 
 -         return documents, batch
 - 
 -     @staticmethod
 -     def save_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
 -                       document_language: str, data_source_info: dict, created_from: str, position: int,
 -                       account: Account,
 -                       name: str, batch: str):
 -         document = Document(
 -             tenant_id=dataset.tenant_id,
 -             dataset_id=dataset.id,
 -             position=position,
 -             data_source_type=data_source_type,
 -             data_source_info=json.dumps(data_source_info),
 -             dataset_process_rule_id=process_rule_id,
 -             batch=batch,
 -             name=name,
 -             created_from=created_from,
 -             created_by=account.id,
 -             doc_form=document_form,
 -             doc_language=document_language
 -         )
 -         return document
 - 
 -     @staticmethod
 -     def get_tenant_documents_count():
 -         documents_count = Document.query.filter(Document.completed_at.isnot(None),
 -                                                 Document.enabled == True,
 -                                                 Document.archived == False,
 -                                                 Document.tenant_id == current_user.current_tenant_id).count()
 -         return documents_count
 - 
 -     @staticmethod
 -     def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
 -                                         account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
 -                                         created_from: str = 'web'):
 -         document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
 -         if document.display_status != 'available':
 -             raise ValueError("Document is not available")
 -         # save process rule
 -         if 'process_rule' in document_data and document_data['process_rule']:
 -             process_rule = document_data["process_rule"]
 -             if process_rule["mode"] == "custom":
 -                 dataset_process_rule = DatasetProcessRule(
 -                     dataset_id=dataset.id,
 -                     mode=process_rule["mode"],
 -                     rules=json.dumps(process_rule["rules"]),
 -                     created_by=account.id
 -                 )
 -             elif process_rule["mode"] == "automatic":
 -                 dataset_process_rule = DatasetProcessRule(
 -                     dataset_id=dataset.id,
 -                     mode=process_rule["mode"],
 -                     rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 -                     created_by=account.id
 -                 )
 -             db.session.add(dataset_process_rule)
 -             db.session.commit()
 -             document.dataset_process_rule_id = dataset_process_rule.id
 -         # update document data source
 -         if 'data_source' in document_data and document_data['data_source']:
 -             file_name = ''
 -             data_source_info = {}
 -             if document_data["data_source"]["type"] == "upload_file":
 -                 upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 -                 for file_id in upload_file_list:
 -                     file = db.session.query(UploadFile).filter(
 -                         UploadFile.tenant_id == dataset.tenant_id,
 -                         UploadFile.id == file_id
 -                     ).first()
 - 
 -                     # raise error if file not found
 -                     if not file:
 -                         raise FileNotExistsError()
 - 
 -                     file_name = file.name
 -                     data_source_info = {
 -                         "upload_file_id": file_id,
 -                     }
 -             elif document_data["data_source"]["type"] == "notion_import":
 -                 notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 -                 for notion_info in notion_info_list:
 -                     workspace_id = notion_info['workspace_id']
 -                     data_source_binding = DataSourceBinding.query.filter(
 -                         db.and_(
 -                             DataSourceBinding.tenant_id == current_user.current_tenant_id,
 -                             DataSourceBinding.provider == 'notion',
 -                             DataSourceBinding.disabled == False,
 -                             DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 -                         )
 -                     ).first()
 -                     if not data_source_binding:
 -                         raise ValueError('Data source binding not found.')
 -                     for page in notion_info['pages']:
 -                         data_source_info = {
 -                             "notion_workspace_id": workspace_id,
 -                             "notion_page_id": page['page_id'],
 -                             "notion_page_icon": page['page_icon'],
 -                             "type": page['type']
 -                         }
 -             document.data_source_type = document_data["data_source"]["type"]
 -             document.data_source_info = json.dumps(data_source_info)
 -             document.name = file_name
 -         # update document to be waiting
 -         document.indexing_status = 'waiting'
 -         document.completed_at = None
 -         document.processing_started_at = None
 -         document.parsing_completed_at = None
 -         document.cleaning_completed_at = None
 -         document.splitting_completed_at = None
 -         document.updated_at = datetime.datetime.utcnow()
 -         document.created_from = created_from
 -         document.doc_form = document_data['doc_form']
 -         db.session.add(document)
 -         db.session.commit()
 -         # update document segment
 -         update_params = {
 -             DocumentSegment.status: 're_segment'
 -         }
 -         DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
 -         db.session.commit()
 -         # trigger async task
 -         document_indexing_update_task.delay(document.dataset_id, document.id)
 - 
 -         return document
 - 
 -     @staticmethod
 -     def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
 -         count = 0
 -         if document_data["data_source"]["type"] == "upload_file":
 -             upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 -             count = len(upload_file_list)
 -         elif document_data["data_source"]["type"] == "notion_import":
 -             notion_page_list = document_data["data_source"]['info_list']['notion_info_list']['pages']
 -             count = len(notion_page_list)
 -         # check document limit
 -         if current_app.config['EDITION'] == 'CLOUD':
 -             documents_count = DocumentService.get_tenant_documents_count()
 -             total_count = documents_count + count
 -             tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
 -             if total_count > tenant_document_count:
 -                 raise ValueError(f"All your documents have overed limit {tenant_document_count}.")
 -         embedding_model = ModelFactory.get_embedding_model(
 -             tenant_id=tenant_id
 -         )
 -         # save dataset
 -         dataset = Dataset(
 -             tenant_id=tenant_id,
 -             name='',
 -             data_source_type=document_data["data_source"]["type"],
 -             indexing_technique=document_data["indexing_technique"],
 -             created_by=account.id,
 -             embedding_model=embedding_model.name,
 -             embedding_model_provider=embedding_model.model_provider.provider_name
 -         )
 - 
 -         db.session.add(dataset)
 -         db.session.flush()
 - 
 -         documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
 - 
 -         cut_length = 18
 -         cut_name = documents[0].name[:cut_length]
 -         dataset.name = cut_name + '...'
 -         dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
 -         db.session.commit()
 - 
 -         return dataset, documents, batch
 - 
 -     @classmethod
 -     def document_create_args_validate(cls, args: dict):
 -         if 'original_document_id' not in args or not args['original_document_id']:
 -             DocumentService.data_source_args_validate(args)
 -             DocumentService.process_rule_args_validate(args)
 -         else:
 -             if ('data_source' not in args and not args['data_source']) \
 -                     and ('process_rule' not in args and not args['process_rule']):
 -                 raise ValueError("Data source or Process rule is required")
 -             else:
 -                 if 'data_source' in args and args['data_source']:
 -                     DocumentService.data_source_args_validate(args)
 -                 if 'process_rule' in args and args['process_rule']:
 -                     DocumentService.process_rule_args_validate(args)
 - 
 -     @classmethod
 -     def data_source_args_validate(cls, args: dict):
 -         if 'data_source' not in args or not args['data_source']:
 -             raise ValueError("Data source is required")
 - 
 -         if not isinstance(args['data_source'], dict):
 -             raise ValueError("Data source is invalid")
 - 
 -         if 'type' not in args['data_source'] or not args['data_source']['type']:
 -             raise ValueError("Data source type is required")
 - 
 -         if args['data_source']['type'] not in Document.DATA_SOURCES:
 -             raise ValueError("Data source type is invalid")
 - 
 -         if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
 -             raise ValueError("Data source info is required")
 - 
 -         if args['data_source']['type'] == 'upload_file':
 -             if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
 -                 'file_info_list']:
 -                 raise ValueError("File source info is required")
 -         if args['data_source']['type'] == 'notion_import':
 -             if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
 -                 'notion_info_list']:
 -                 raise ValueError("Notion source info is required")
 - 
 -     @classmethod
 -     def process_rule_args_validate(cls, args: dict):
 -         if 'process_rule' not in args or not args['process_rule']:
 -             raise ValueError("Process rule is required")
 - 
 -         if not isinstance(args['process_rule'], dict):
 -             raise ValueError("Process rule is invalid")
 - 
 -         if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
 -             raise ValueError("Process rule mode is required")
 - 
 -         if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
 -             raise ValueError("Process rule mode is invalid")
 - 
 -         if args['process_rule']['mode'] == 'automatic':
 -             args['process_rule']['rules'] = {}
 -         else:
 -             if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
 -                 raise ValueError("Process rule rules is required")
 - 
 -             if not isinstance(args['process_rule']['rules'], dict):
 -                 raise ValueError("Process rule rules is invalid")
 - 
 -             if 'pre_processing_rules' not in args['process_rule']['rules'] \
 -                     or args['process_rule']['rules']['pre_processing_rules'] is None:
 -                 raise ValueError("Process rule pre_processing_rules is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
 -                 raise ValueError("Process rule pre_processing_rules is invalid")
 - 
 -             unique_pre_processing_rule_dicts = {}
 -             for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
 -                 if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
 -                     raise ValueError("Process rule pre_processing_rules id is required")
 - 
 -                 if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 -                     raise ValueError("Process rule pre_processing_rules id is invalid")
 - 
 -                 if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
 -                     raise ValueError("Process rule pre_processing_rules enabled is required")
 - 
 -                 if not isinstance(pre_processing_rule['enabled'], bool):
 -                     raise ValueError("Process rule pre_processing_rules enabled is invalid")
 - 
 -                 unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
 - 
 -             args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
 - 
 -             if 'segmentation' not in args['process_rule']['rules'] \
 -                     or args['process_rule']['rules']['segmentation'] is None:
 -                 raise ValueError("Process rule segmentation is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation'], dict):
 -                 raise ValueError("Process rule segmentation is invalid")
 - 
 -             if 'separator' not in args['process_rule']['rules']['segmentation'] \
 -                     or not args['process_rule']['rules']['segmentation']['separator']:
 -                 raise ValueError("Process rule segmentation separator is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
 -                 raise ValueError("Process rule segmentation separator is invalid")
 - 
 -             if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
 -                     or not args['process_rule']['rules']['segmentation']['max_tokens']:
 -                 raise ValueError("Process rule segmentation max_tokens is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
 -                 raise ValueError("Process rule segmentation max_tokens is invalid")
 - 
 -     @classmethod
 -     def estimate_args_validate(cls, args: dict):
 -         if 'info_list' not in args or not args['info_list']:
 -             raise ValueError("Data source info is required")
 - 
 -         if not isinstance(args['info_list'], dict):
 -             raise ValueError("Data info is invalid")
 - 
 -         if 'process_rule' not in args or not args['process_rule']:
 -             raise ValueError("Process rule is required")
 - 
 -         if not isinstance(args['process_rule'], dict):
 -             raise ValueError("Process rule is invalid")
 - 
 -         if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
 -             raise ValueError("Process rule mode is required")
 - 
 -         if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
 -             raise ValueError("Process rule mode is invalid")
 - 
 -         if args['process_rule']['mode'] == 'automatic':
 -             args['process_rule']['rules'] = {}
 -         else:
 -             if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
 -                 raise ValueError("Process rule rules is required")
 - 
 -             if not isinstance(args['process_rule']['rules'], dict):
 -                 raise ValueError("Process rule rules is invalid")
 - 
 -             if 'pre_processing_rules' not in args['process_rule']['rules'] \
 -                     or args['process_rule']['rules']['pre_processing_rules'] is None:
 -                 raise ValueError("Process rule pre_processing_rules is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
 -                 raise ValueError("Process rule pre_processing_rules is invalid")
 - 
 -             unique_pre_processing_rule_dicts = {}
 -             for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
 -                 if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
 -                     raise ValueError("Process rule pre_processing_rules id is required")
 - 
 -                 if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 -                     raise ValueError("Process rule pre_processing_rules id is invalid")
 - 
 -                 if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
 -                     raise ValueError("Process rule pre_processing_rules enabled is required")
 - 
 -                 if not isinstance(pre_processing_rule['enabled'], bool):
 -                     raise ValueError("Process rule pre_processing_rules enabled is invalid")
 - 
 -                 unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
 - 
 -             args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
 - 
 -             if 'segmentation' not in args['process_rule']['rules'] \
 -                     or args['process_rule']['rules']['segmentation'] is None:
 -                 raise ValueError("Process rule segmentation is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation'], dict):
 -                 raise ValueError("Process rule segmentation is invalid")
 - 
 -             if 'separator' not in args['process_rule']['rules']['segmentation'] \
 -                     or not args['process_rule']['rules']['segmentation']['separator']:
 -                 raise ValueError("Process rule segmentation separator is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
 -                 raise ValueError("Process rule segmentation separator is invalid")
 - 
 -             if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
 -                     or not args['process_rule']['rules']['segmentation']['max_tokens']:
 -                 raise ValueError("Process rule segmentation max_tokens is required")
 - 
 -             if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
 -                 raise ValueError("Process rule segmentation max_tokens is invalid")
 - 
 - 
 - class SegmentService:
 -     @classmethod
 -     def segment_create_args_validate(cls, args: dict, document: Document):
 -         if document.doc_form == 'qa_model':
 -             if 'answer' not in args or not args['answer']:
 -                 raise ValueError("Answer is required")
 - 
 -     @classmethod
 -     def create_segment(cls, args: dict, document: Document, dataset: Dataset):
 -         content = args['content']
 -         doc_id = str(uuid.uuid4())
 -         segment_hash = helper.generate_text_hash(content)
 - 
 -         embedding_model = ModelFactory.get_embedding_model(
 -             tenant_id=dataset.tenant_id,
 -             model_provider_name=dataset.embedding_model_provider,
 -             model_name=dataset.embedding_model
 -         )
 - 
 -         # calc embedding use tokens
 -         tokens = embedding_model.get_num_tokens(content)
 -         max_position = db.session.query(func.max(DocumentSegment.position)).filter(
 -             DocumentSegment.document_id == document.id
 -         ).scalar()
 -         segment_document = DocumentSegment(
 -             tenant_id=current_user.current_tenant_id,
 -             dataset_id=document.dataset_id,
 -             document_id=document.id,
 -             index_node_id=doc_id,
 -             index_node_hash=segment_hash,
 -             position=max_position + 1 if max_position else 1,
 -             content=content,
 -             word_count=len(content),
 -             tokens=tokens,
 -             status='completed',
 -             indexing_at=datetime.datetime.utcnow(),
 -             completed_at=datetime.datetime.utcnow(),
 -             created_by=current_user.id
 -         )
 -         if document.doc_form == 'qa_model':
 -             segment_document.answer = args['answer']
 - 
 -         db.session.add(segment_document)
 -         db.session.commit()
 - 
 -         # save vector index
 -         try:
 -             VectorService.create_segment_vector(args['keywords'], segment_document, dataset)
 -         except Exception as e:
 -             logging.exception("create segment index failed")
 -             segment_document.enabled = False
 -             segment_document.disabled_at = datetime.datetime.utcnow()
 -             segment_document.status = 'error'
 -             segment_document.error = str(e)
 -             db.session.commit()
 -         segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
 -         return segment
 - 
 -     @classmethod
 -     def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
 -         indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
 -         cache_result = redis_client.get(indexing_cache_key)
 -         if cache_result is not None:
 -             raise ValueError("Segment is indexing, please try again later")
 -         try:
 -             content = args['content']
 -             if segment.content == content:
 -                 if document.doc_form == 'qa_model':
 -                     segment.answer = args['answer']
 -                 if args['keywords']:
 -                     segment.keywords = args['keywords']
 -                 db.session.add(segment)
 -                 db.session.commit()
 -                 # update segment index task
 -                 if args['keywords']:
 -                     kw_index = IndexBuilder.get_index(dataset, 'economy')
 -                     # delete from keyword index
 -                     kw_index.delete_by_ids([segment.index_node_id])
 -                     # save keyword index
 -                     kw_index.update_segment_keywords_index(segment.index_node_id, segment.keywords)
 -             else:
 -                 segment_hash = helper.generate_text_hash(content)
 - 
 -                 embedding_model = ModelFactory.get_embedding_model(
 -                     tenant_id=dataset.tenant_id,
 -                     model_provider_name=dataset.embedding_model_provider,
 -                     model_name=dataset.embedding_model
 -                 )
 - 
 -                 # calc embedding use tokens
 -                 tokens = embedding_model.get_num_tokens(content)
 -                 segment.content = content
 -                 segment.index_node_hash = segment_hash
 -                 segment.word_count = len(content)
 -                 segment.tokens = tokens
 -                 segment.status = 'completed'
 -                 segment.indexing_at = datetime.datetime.utcnow()
 -                 segment.completed_at = datetime.datetime.utcnow()
 -                 segment.updated_by = current_user.id
 -                 segment.updated_at = datetime.datetime.utcnow()
 -                 if document.doc_form == 'qa_model':
 -                     segment.answer = args['answer']
 -                 db.session.add(segment)
 -                 db.session.commit()
 -                 # update segment vector index
 -                 VectorService.update_segment_vector(args['keywords'], segment, dataset)
 -         except Exception as e:
 -             logging.exception("update segment index failed")
 -             segment.enabled = False
 -             segment.disabled_at = datetime.datetime.utcnow()
 -             segment.status = 'error'
 -             segment.error = str(e)
 -             db.session.commit()
 -         segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
 -         return segment
 - 
 -     @classmethod
 -     def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
 -         indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
 -         cache_result = redis_client.get(indexing_cache_key)
 -         if cache_result is not None:
 -             raise ValueError("Segment is deleting.")
 -         # send delete segment index task
 -         redis_client.setex(indexing_cache_key, 600, 1)
 -         # enabled segment need to delete index
 -         if segment.enabled:
 -             delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
 -         db.session.delete(segment)
 -         db.session.commit()
 
 
  |