- import json
 - import time
 - import uuid
 - from collections.abc import Callable, Generator, Mapping, Sequence
 - from datetime import UTC, datetime
 - from typing import Any, Optional
 - from uuid import uuid4
 - 
 - from sqlalchemy import select
 - from sqlalchemy.orm import Session
 - 
 - from core.app.app_config.entities import VariableEntityType
 - from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
 - from core.app.apps.workflow.app_config_manager import WorkflowAppConfigManager
 - from core.file import File
 - from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
 - from core.variables import Variable
 - from core.workflow.entities.node_entities import NodeRunResult
 - from core.workflow.entities.variable_pool import VariablePool
 - from core.workflow.entities.workflow_node_execution import WorkflowNodeExecution, WorkflowNodeExecutionStatus
 - from core.workflow.enums import SystemVariableKey
 - from core.workflow.errors import WorkflowNodeRunFailedError
 - from core.workflow.graph_engine.entities.event import InNodeEvent
 - from core.workflow.nodes import NodeType
 - from core.workflow.nodes.base.node import BaseNode
 - from core.workflow.nodes.enums import ErrorStrategy
 - from core.workflow.nodes.event import RunCompletedEvent
 - from core.workflow.nodes.event.types import NodeEvent
 - from core.workflow.nodes.node_mapping import LATEST_VERSION, NODE_TYPE_CLASSES_MAPPING
 - from core.workflow.nodes.start.entities import StartNodeData
 - from core.workflow.workflow_entry import WorkflowEntry
 - from events.app_event import app_draft_workflow_was_synced, app_published_workflow_was_updated
 - from extensions.ext_database import db
 - from factories.file_factory import build_from_mapping, build_from_mappings
 - from models.account import Account
 - from models.model import App, AppMode
 - from models.tools import WorkflowToolProvider
 - from models.workflow import (
 -     Workflow,
 -     WorkflowNodeExecutionModel,
 -     WorkflowNodeExecutionTriggeredFrom,
 -     WorkflowType,
 - )
 - from services.errors.app import IsDraftWorkflowError, WorkflowHashNotEqualError
 - from services.workflow.workflow_converter import WorkflowConverter
 - 
 - from .errors.workflow_service import DraftWorkflowDeletionError, WorkflowInUseError
 - from .workflow_draft_variable_service import (
 -     DraftVariableSaver,
 -     DraftVarLoader,
 -     WorkflowDraftVariableService,
 - )
 - 
 - 
 - class WorkflowService:
 -     """
 -     Workflow Service
 -     """
 - 
 -     def get_node_last_run(self, app_model: App, workflow: Workflow, node_id: str) -> WorkflowNodeExecutionModel | None:
 -         # TODO(QuantumGhost): This query is not fully covered by index.
 -         criteria = (
 -             WorkflowNodeExecutionModel.tenant_id == app_model.tenant_id,
 -             WorkflowNodeExecutionModel.app_id == app_model.id,
 -             WorkflowNodeExecutionModel.workflow_id == workflow.id,
 -             WorkflowNodeExecutionModel.node_id == node_id,
 -         )
 -         node_exec = (
 -             db.session.query(WorkflowNodeExecutionModel)
 -             .filter(*criteria)
 -             .order_by(WorkflowNodeExecutionModel.created_at.desc())
 -             .first()
 -         )
 -         return node_exec
 - 
 -     def is_workflow_exist(self, app_model: App) -> bool:
 -         return (
 -             db.session.query(Workflow)
 -             .filter(
 -                 Workflow.tenant_id == app_model.tenant_id,
 -                 Workflow.app_id == app_model.id,
 -                 Workflow.version == Workflow.VERSION_DRAFT,
 -             )
 -             .count()
 -         ) > 0
 - 
 -     def get_draft_workflow(self, app_model: App) -> Optional[Workflow]:
 -         """
 -         Get draft workflow
 -         """
 -         # fetch draft workflow by app_model
 -         workflow = (
 -             db.session.query(Workflow)
 -             .filter(
 -                 Workflow.tenant_id == app_model.tenant_id, Workflow.app_id == app_model.id, Workflow.version == "draft"
 -             )
 -             .first()
 -         )
 - 
 -         # return draft workflow
 -         return workflow
 - 
 -     def get_published_workflow_by_id(self, app_model: App, workflow_id: str) -> Optional[Workflow]:
 -         # fetch published workflow by workflow_id
 -         workflow = (
 -             db.session.query(Workflow)
 -             .filter(
 -                 Workflow.tenant_id == app_model.tenant_id,
 -                 Workflow.app_id == app_model.id,
 -                 Workflow.id == workflow_id,
 -             )
 -             .first()
 -         )
 -         if not workflow:
 -             return None
 -         if workflow.version == Workflow.VERSION_DRAFT:
 -             raise IsDraftWorkflowError(f"Workflow is draft version, id={workflow_id}")
 -         return workflow
 - 
 -     def get_published_workflow(self, app_model: App) -> Optional[Workflow]:
 -         """
 -         Get published workflow
 -         """
 - 
 -         if not app_model.workflow_id:
 -             return None
 - 
 -         # fetch published workflow by workflow_id
 -         workflow = (
 -             db.session.query(Workflow)
 -             .filter(
 -                 Workflow.tenant_id == app_model.tenant_id,
 -                 Workflow.app_id == app_model.id,
 -                 Workflow.id == app_model.workflow_id,
 -             )
 -             .first()
 -         )
 - 
 -         return workflow
 - 
 -     def get_all_published_workflow(
 -         self,
 -         *,
 -         session: Session,
 -         app_model: App,
 -         page: int,
 -         limit: int,
 -         user_id: str | None,
 -         named_only: bool = False,
 -     ) -> tuple[Sequence[Workflow], bool]:
 -         """
 -         Get published workflow with pagination
 -         """
 -         if not app_model.workflow_id:
 -             return [], False
 - 
 -         stmt = (
 -             select(Workflow)
 -             .where(Workflow.app_id == app_model.id)
 -             .order_by(Workflow.version.desc())
 -             .limit(limit + 1)
 -             .offset((page - 1) * limit)
 -         )
 - 
 -         if user_id:
 -             stmt = stmt.where(Workflow.created_by == user_id)
 - 
 -         if named_only:
 -             stmt = stmt.where(Workflow.marked_name != "")
 - 
 -         workflows = session.scalars(stmt).all()
 - 
 -         has_more = len(workflows) > limit
 -         if has_more:
 -             workflows = workflows[:-1]
 - 
 -         return workflows, has_more
 - 
 -     def sync_draft_workflow(
 -         self,
 -         *,
 -         app_model: App,
 -         graph: dict,
 -         features: dict,
 -         unique_hash: Optional[str],
 -         account: Account,
 -         environment_variables: Sequence[Variable],
 -         conversation_variables: Sequence[Variable],
 -     ) -> Workflow:
 -         """
 -         Sync draft workflow
 -         :raises WorkflowHashNotEqualError
 -         """
 -         # fetch draft workflow by app_model
 -         workflow = self.get_draft_workflow(app_model=app_model)
 - 
 -         if workflow and workflow.unique_hash != unique_hash:
 -             raise WorkflowHashNotEqualError()
 - 
 -         # validate features structure
 -         self.validate_features_structure(app_model=app_model, features=features)
 - 
 -         # create draft workflow if not found
 -         if not workflow:
 -             workflow = Workflow(
 -                 tenant_id=app_model.tenant_id,
 -                 app_id=app_model.id,
 -                 type=WorkflowType.from_app_mode(app_model.mode).value,
 -                 version="draft",
 -                 graph=json.dumps(graph),
 -                 features=json.dumps(features),
 -                 created_by=account.id,
 -                 environment_variables=environment_variables,
 -                 conversation_variables=conversation_variables,
 -             )
 -             db.session.add(workflow)
 -         # update draft workflow if found
 -         else:
 -             workflow.graph = json.dumps(graph)
 -             workflow.features = json.dumps(features)
 -             workflow.updated_by = account.id
 -             workflow.updated_at = datetime.now(UTC).replace(tzinfo=None)
 -             workflow.environment_variables = environment_variables
 -             workflow.conversation_variables = conversation_variables
 - 
 -         # commit db session changes
 -         db.session.commit()
 - 
 -         # trigger app workflow events
 -         app_draft_workflow_was_synced.send(app_model, synced_draft_workflow=workflow)
 - 
 -         # return draft workflow
 -         return workflow
 - 
 -     def publish_workflow(
 -         self,
 -         *,
 -         session: Session,
 -         app_model: App,
 -         account: Account,
 -         marked_name: str = "",
 -         marked_comment: str = "",
 -     ) -> Workflow:
 -         draft_workflow_stmt = select(Workflow).where(
 -             Workflow.tenant_id == app_model.tenant_id,
 -             Workflow.app_id == app_model.id,
 -             Workflow.version == "draft",
 -         )
 -         draft_workflow = session.scalar(draft_workflow_stmt)
 -         if not draft_workflow:
 -             raise ValueError("No valid workflow found.")
 - 
 -         # create new workflow
 -         workflow = Workflow.new(
 -             tenant_id=app_model.tenant_id,
 -             app_id=app_model.id,
 -             type=draft_workflow.type,
 -             version=Workflow.version_from_datetime(datetime.now(UTC).replace(tzinfo=None)),
 -             graph=draft_workflow.graph,
 -             features=draft_workflow.features,
 -             created_by=account.id,
 -             environment_variables=draft_workflow.environment_variables,
 -             conversation_variables=draft_workflow.conversation_variables,
 -             marked_name=marked_name,
 -             marked_comment=marked_comment,
 -         )
 - 
 -         # commit db session changes
 -         session.add(workflow)
 - 
 -         # trigger app workflow events
 -         app_published_workflow_was_updated.send(app_model, published_workflow=workflow)
 - 
 -         # return new workflow
 -         return workflow
 - 
 -     def get_default_block_configs(self) -> list[dict]:
 -         """
 -         Get default block configs
 -         """
 -         # return default block config
 -         default_block_configs = []
 -         for node_class_mapping in NODE_TYPE_CLASSES_MAPPING.values():
 -             node_class = node_class_mapping[LATEST_VERSION]
 -             default_config = node_class.get_default_config()
 -             if default_config:
 -                 default_block_configs.append(default_config)
 - 
 -         return default_block_configs
 - 
 -     def get_default_block_config(self, node_type: str, filters: Optional[dict] = None) -> Optional[dict]:
 -         """
 -         Get default config of node.
 -         :param node_type: node type
 -         :param filters: filter by node config parameters.
 -         :return:
 -         """
 -         node_type_enum = NodeType(node_type)
 - 
 -         # return default block config
 -         if node_type_enum not in NODE_TYPE_CLASSES_MAPPING:
 -             return None
 - 
 -         node_class = NODE_TYPE_CLASSES_MAPPING[node_type_enum][LATEST_VERSION]
 -         default_config = node_class.get_default_config(filters=filters)
 -         if not default_config:
 -             return None
 - 
 -         return default_config
 - 
 -     def run_draft_workflow_node(
 -         self,
 -         app_model: App,
 -         draft_workflow: Workflow,
 -         node_id: str,
 -         user_inputs: Mapping[str, Any],
 -         account: Account,
 -         query: str = "",
 -         files: Sequence[File] | None = None,
 -     ) -> WorkflowNodeExecutionModel:
 -         """
 -         Run draft workflow node
 -         """
 -         files = files or []
 - 
 -         with Session(bind=db.engine, expire_on_commit=False) as session, session.begin():
 -             draft_var_srv = WorkflowDraftVariableService(session)
 -             draft_var_srv.prefill_conversation_variable_default_values(draft_workflow)
 - 
 -         node_config = draft_workflow.get_node_config_by_id(node_id)
 -         node_type = Workflow.get_node_type_from_node_config(node_config)
 -         node_data = node_config.get("data", {})
 -         if node_type == NodeType.START:
 -             with Session(bind=db.engine) as session, session.begin():
 -                 draft_var_srv = WorkflowDraftVariableService(session)
 -                 conversation_id = draft_var_srv.get_or_create_conversation(
 -                     account_id=account.id,
 -                     app=app_model,
 -                     workflow=draft_workflow,
 -                 )
 -                 start_data = StartNodeData.model_validate(node_data)
 -                 user_inputs = _rebuild_file_for_user_inputs_in_start_node(
 -                     tenant_id=draft_workflow.tenant_id, start_node_data=start_data, user_inputs=user_inputs
 -                 )
 -                 # init variable pool
 -                 variable_pool = _setup_variable_pool(
 -                     query=query,
 -                     files=files or [],
 -                     user_id=account.id,
 -                     user_inputs=user_inputs,
 -                     workflow=draft_workflow,
 -                     # NOTE(QuantumGhost): We rely on `DraftVarLoader` to load conversation variables.
 -                     conversation_variables=[],
 -                     node_type=node_type,
 -                     conversation_id=conversation_id,
 -                 )
 - 
 -         else:
 -             variable_pool = VariablePool(
 -                 system_variables={},
 -                 user_inputs=user_inputs,
 -                 environment_variables=draft_workflow.environment_variables,
 -                 conversation_variables=[],
 -             )
 - 
 -         variable_loader = DraftVarLoader(
 -             engine=db.engine,
 -             app_id=app_model.id,
 -             tenant_id=app_model.tenant_id,
 -         )
 - 
 -         eclosing_node_type_and_id = draft_workflow.get_enclosing_node_type_and_id(node_config)
 -         if eclosing_node_type_and_id:
 -             _, enclosing_node_id = eclosing_node_type_and_id
 -         else:
 -             enclosing_node_id = None
 - 
 -         run = WorkflowEntry.single_step_run(
 -             workflow=draft_workflow,
 -             node_id=node_id,
 -             user_inputs=user_inputs,
 -             user_id=account.id,
 -             variable_pool=variable_pool,
 -             variable_loader=variable_loader,
 -         )
 - 
 -         # run draft workflow node
 -         start_at = time.perf_counter()
 -         node_execution = self._handle_node_run_result(
 -             invoke_node_fn=lambda: run,
 -             start_at=start_at,
 -             node_id=node_id,
 -         )
 - 
 -         # Set workflow_id on the NodeExecution
 -         node_execution.workflow_id = draft_workflow.id
 - 
 -         # Create repository and save the node execution
 -         repository = SQLAlchemyWorkflowNodeExecutionRepository(
 -             session_factory=db.engine,
 -             user=account,
 -             app_id=app_model.id,
 -             triggered_from=WorkflowNodeExecutionTriggeredFrom.SINGLE_STEP,
 -         )
 -         repository.save(node_execution)
 - 
 -         # Convert node_execution to WorkflowNodeExecution after save
 -         workflow_node_execution = repository.to_db_model(node_execution)
 - 
 -         with Session(bind=db.engine) as session, session.begin():
 -             draft_var_saver = DraftVariableSaver(
 -                 session=session,
 -                 app_id=app_model.id,
 -                 node_id=workflow_node_execution.node_id,
 -                 node_type=NodeType(workflow_node_execution.node_type),
 -                 enclosing_node_id=enclosing_node_id,
 -                 node_execution_id=node_execution.id,
 -             )
 -             draft_var_saver.save(process_data=node_execution.process_data, outputs=node_execution.outputs)
 -             session.commit()
 -         return workflow_node_execution
 - 
 -     def run_free_workflow_node(
 -         self, node_data: dict, tenant_id: str, user_id: str, node_id: str, user_inputs: dict[str, Any]
 -     ) -> WorkflowNodeExecution:
 -         """
 -         Run draft workflow node
 -         """
 -         # run draft workflow node
 -         start_at = time.perf_counter()
 - 
 -         workflow_node_execution = self._handle_node_run_result(
 -             invoke_node_fn=lambda: WorkflowEntry.run_free_node(
 -                 node_id=node_id,
 -                 node_data=node_data,
 -                 tenant_id=tenant_id,
 -                 user_id=user_id,
 -                 user_inputs=user_inputs,
 -             ),
 -             start_at=start_at,
 -             node_id=node_id,
 -         )
 - 
 -         return workflow_node_execution
 - 
 -     def _handle_node_run_result(
 -         self,
 -         invoke_node_fn: Callable[[], tuple[BaseNode, Generator[NodeEvent | InNodeEvent, None, None]]],
 -         start_at: float,
 -         node_id: str,
 -     ) -> WorkflowNodeExecution:
 -         try:
 -             node_instance, generator = invoke_node_fn()
 - 
 -             node_run_result: NodeRunResult | None = None
 -             for event in generator:
 -                 if isinstance(event, RunCompletedEvent):
 -                     node_run_result = event.run_result
 - 
 -                     # sign output files
 -                     # node_run_result.outputs = WorkflowEntry.handle_special_values(node_run_result.outputs)
 -                     break
 - 
 -             if not node_run_result:
 -                 raise ValueError("Node run failed with no run result")
 -             # single step debug mode error handling return
 -             if node_run_result.status == WorkflowNodeExecutionStatus.FAILED and node_instance.should_continue_on_error:
 -                 node_error_args: dict[str, Any] = {
 -                     "status": WorkflowNodeExecutionStatus.EXCEPTION,
 -                     "error": node_run_result.error,
 -                     "inputs": node_run_result.inputs,
 -                     "metadata": {"error_strategy": node_instance.node_data.error_strategy},
 -                 }
 -                 if node_instance.node_data.error_strategy is ErrorStrategy.DEFAULT_VALUE:
 -                     node_run_result = NodeRunResult(
 -                         **node_error_args,
 -                         outputs={
 -                             **node_instance.node_data.default_value_dict,
 -                             "error_message": node_run_result.error,
 -                             "error_type": node_run_result.error_type,
 -                         },
 -                     )
 -                 else:
 -                     node_run_result = NodeRunResult(
 -                         **node_error_args,
 -                         outputs={
 -                             "error_message": node_run_result.error,
 -                             "error_type": node_run_result.error_type,
 -                         },
 -                     )
 -             run_succeeded = node_run_result.status in (
 -                 WorkflowNodeExecutionStatus.SUCCEEDED,
 -                 WorkflowNodeExecutionStatus.EXCEPTION,
 -             )
 -             error = node_run_result.error if not run_succeeded else None
 -         except WorkflowNodeRunFailedError as e:
 -             node_instance = e.node_instance
 -             run_succeeded = False
 -             node_run_result = None
 -             error = e.error
 - 
 -         # Create a NodeExecution domain model
 -         node_execution = WorkflowNodeExecution(
 -             id=str(uuid4()),
 -             workflow_id="",  # This is a single-step execution, so no workflow ID
 -             index=1,
 -             node_id=node_id,
 -             node_type=node_instance.node_type,
 -             title=node_instance.node_data.title,
 -             elapsed_time=time.perf_counter() - start_at,
 -             created_at=datetime.now(UTC).replace(tzinfo=None),
 -             finished_at=datetime.now(UTC).replace(tzinfo=None),
 -         )
 - 
 -         if run_succeeded and node_run_result:
 -             # Set inputs, process_data, and outputs as dictionaries (not JSON strings)
 -             inputs = WorkflowEntry.handle_special_values(node_run_result.inputs) if node_run_result.inputs else None
 -             process_data = (
 -                 WorkflowEntry.handle_special_values(node_run_result.process_data)
 -                 if node_run_result.process_data
 -                 else None
 -             )
 -             outputs = node_run_result.outputs
 - 
 -             node_execution.inputs = inputs
 -             node_execution.process_data = process_data
 -             node_execution.outputs = outputs
 -             node_execution.metadata = node_run_result.metadata
 - 
 -             # Map status from WorkflowNodeExecutionStatus to NodeExecutionStatus
 -             if node_run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED:
 -                 node_execution.status = WorkflowNodeExecutionStatus.SUCCEEDED
 -             elif node_run_result.status == WorkflowNodeExecutionStatus.EXCEPTION:
 -                 node_execution.status = WorkflowNodeExecutionStatus.EXCEPTION
 -                 node_execution.error = node_run_result.error
 -         else:
 -             # Set failed status and error
 -             node_execution.status = WorkflowNodeExecutionStatus.FAILED
 -             node_execution.error = error
 - 
 -         return node_execution
 - 
 -     def convert_to_workflow(self, app_model: App, account: Account, args: dict) -> App:
 -         """
 -         Basic mode of chatbot app(expert mode) to workflow
 -         Completion App to Workflow App
 - 
 -         :param app_model: App instance
 -         :param account: Account instance
 -         :param args: dict
 -         :return:
 -         """
 -         # chatbot convert to workflow mode
 -         workflow_converter = WorkflowConverter()
 - 
 -         if app_model.mode not in {AppMode.CHAT.value, AppMode.COMPLETION.value}:
 -             raise ValueError(f"Current App mode: {app_model.mode} is not supported convert to workflow.")
 - 
 -         # convert to workflow
 -         new_app: App = workflow_converter.convert_to_workflow(
 -             app_model=app_model,
 -             account=account,
 -             name=args.get("name", "Default Name"),
 -             icon_type=args.get("icon_type", "emoji"),
 -             icon=args.get("icon", "🤖"),
 -             icon_background=args.get("icon_background", "#FFEAD5"),
 -         )
 - 
 -         return new_app
 - 
 -     def validate_features_structure(self, app_model: App, features: dict) -> dict:
 -         if app_model.mode == AppMode.ADVANCED_CHAT.value:
 -             return AdvancedChatAppConfigManager.config_validate(
 -                 tenant_id=app_model.tenant_id, config=features, only_structure_validate=True
 -             )
 -         elif app_model.mode == AppMode.WORKFLOW.value:
 -             return WorkflowAppConfigManager.config_validate(
 -                 tenant_id=app_model.tenant_id, config=features, only_structure_validate=True
 -             )
 -         else:
 -             raise ValueError(f"Invalid app mode: {app_model.mode}")
 - 
 -     def update_workflow(
 -         self, *, session: Session, workflow_id: str, tenant_id: str, account_id: str, data: dict
 -     ) -> Optional[Workflow]:
 -         """
 -         Update workflow attributes
 - 
 -         :param session: SQLAlchemy database session
 -         :param workflow_id: Workflow ID
 -         :param tenant_id: Tenant ID
 -         :param account_id: Account ID (for permission check)
 -         :param data: Dictionary containing fields to update
 -         :return: Updated workflow or None if not found
 -         """
 -         stmt = select(Workflow).where(Workflow.id == workflow_id, Workflow.tenant_id == tenant_id)
 -         workflow = session.scalar(stmt)
 - 
 -         if not workflow:
 -             return None
 - 
 -         allowed_fields = ["marked_name", "marked_comment"]
 - 
 -         for field, value in data.items():
 -             if field in allowed_fields:
 -                 setattr(workflow, field, value)
 - 
 -         workflow.updated_by = account_id
 -         workflow.updated_at = datetime.now(UTC).replace(tzinfo=None)
 - 
 -         return workflow
 - 
 -     def delete_workflow(self, *, session: Session, workflow_id: str, tenant_id: str) -> bool:
 -         """
 -         Delete a workflow
 - 
 -         :param session: SQLAlchemy database session
 -         :param workflow_id: Workflow ID
 -         :param tenant_id: Tenant ID
 -         :return: True if successful
 -         :raises: ValueError if workflow not found
 -         :raises: WorkflowInUseError if workflow is in use
 -         :raises: DraftWorkflowDeletionError if workflow is a draft version
 -         """
 -         stmt = select(Workflow).where(Workflow.id == workflow_id, Workflow.tenant_id == tenant_id)
 -         workflow = session.scalar(stmt)
 - 
 -         if not workflow:
 -             raise ValueError(f"Workflow with ID {workflow_id} not found")
 - 
 -         # Check if workflow is a draft version
 -         if workflow.version == "draft":
 -             raise DraftWorkflowDeletionError("Cannot delete draft workflow versions")
 - 
 -         # Check if this workflow is currently referenced by an app
 -         app_stmt = select(App).where(App.workflow_id == workflow_id)
 -         app = session.scalar(app_stmt)
 -         if app:
 -             # Cannot delete a workflow that's currently in use by an app
 -             raise WorkflowInUseError(f"Cannot delete workflow that is currently in use by app '{app.id}'")
 - 
 -         # Don't use workflow.tool_published as it's not accurate for specific workflow versions
 -         # Check if there's a tool provider using this specific workflow version
 -         tool_provider = (
 -             session.query(WorkflowToolProvider)
 -             .filter(
 -                 WorkflowToolProvider.tenant_id == workflow.tenant_id,
 -                 WorkflowToolProvider.app_id == workflow.app_id,
 -                 WorkflowToolProvider.version == workflow.version,
 -             )
 -             .first()
 -         )
 - 
 -         if tool_provider:
 -             # Cannot delete a workflow that's published as a tool
 -             raise WorkflowInUseError("Cannot delete workflow that is published as a tool")
 - 
 -         session.delete(workflow)
 -         return True
 - 
 - 
 - def _setup_variable_pool(
 -     query: str,
 -     files: Sequence[File],
 -     user_id: str,
 -     user_inputs: Mapping[str, Any],
 -     workflow: Workflow,
 -     node_type: NodeType,
 -     conversation_id: str,
 -     conversation_variables: list[Variable],
 - ):
 -     # Only inject system variables for START node type.
 -     if node_type == NodeType.START:
 -         # Create a variable pool.
 -         system_inputs: dict[SystemVariableKey, Any] = {
 -             # From inputs:
 -             SystemVariableKey.FILES: files,
 -             SystemVariableKey.USER_ID: user_id,
 -             # From workflow model
 -             SystemVariableKey.APP_ID: workflow.app_id,
 -             SystemVariableKey.WORKFLOW_ID: workflow.id,
 -             # Randomly generated.
 -             SystemVariableKey.WORKFLOW_EXECUTION_ID: str(uuid.uuid4()),
 -         }
 - 
 -         # Only add chatflow-specific variables for non-workflow types
 -         if workflow.type != WorkflowType.WORKFLOW.value:
 -             system_inputs.update(
 -                 {
 -                     SystemVariableKey.QUERY: query,
 -                     SystemVariableKey.CONVERSATION_ID: conversation_id,
 -                     SystemVariableKey.DIALOGUE_COUNT: 0,
 -                 }
 -             )
 -     else:
 -         system_inputs = {}
 - 
 -     # init variable pool
 -     variable_pool = VariablePool(
 -         system_variables=system_inputs,
 -         user_inputs=user_inputs,
 -         environment_variables=workflow.environment_variables,
 -         conversation_variables=conversation_variables,
 -     )
 - 
 -     return variable_pool
 - 
 - 
 - def _rebuild_file_for_user_inputs_in_start_node(
 -     tenant_id: str, start_node_data: StartNodeData, user_inputs: Mapping[str, Any]
 - ) -> Mapping[str, Any]:
 -     inputs_copy = dict(user_inputs)
 - 
 -     for variable in start_node_data.variables:
 -         if variable.type not in (VariableEntityType.FILE, VariableEntityType.FILE_LIST):
 -             continue
 -         if variable.variable not in user_inputs:
 -             continue
 -         value = user_inputs[variable.variable]
 -         file = _rebuild_single_file(tenant_id=tenant_id, value=value, variable_entity_type=variable.type)
 -         inputs_copy[variable.variable] = file
 -     return inputs_copy
 - 
 - 
 - def _rebuild_single_file(tenant_id: str, value: Any, variable_entity_type: VariableEntityType) -> File | Sequence[File]:
 -     if variable_entity_type == VariableEntityType.FILE:
 -         if not isinstance(value, dict):
 -             raise ValueError(f"expected dict for file object, got {type(value)}")
 -         return build_from_mapping(mapping=value, tenant_id=tenant_id)
 -     elif variable_entity_type == VariableEntityType.FILE_LIST:
 -         if not isinstance(value, list):
 -             raise ValueError(f"expected list for file list object, got {type(value)}")
 -         if len(value) == 0:
 -             return []
 -         if not isinstance(value[0], dict):
 -             raise ValueError(f"expected dict for first element in the file list, got {type(value)}")
 -         return build_from_mappings(mappings=value, tenant_id=tenant_id)
 -     else:
 -         raise Exception("unreachable")
 
 
  |