| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 | 
                        - import threading
 - from typing import Optional
 - 
 - from flask import Flask, current_app
 - 
 - from core.rag.data_post_processor.data_post_processor import DataPostProcessor
 - from core.rag.datasource.keyword.keyword_factory import Keyword
 - from core.rag.datasource.vdb.vector_factory import Vector
 - from extensions.ext_database import db
 - from models.dataset import Dataset
 - 
 - default_retrieval_model = {
 -     'search_method': 'semantic_search',
 -     'reranking_enable': False,
 -     'reranking_model': {
 -         'reranking_provider_name': '',
 -         'reranking_model_name': ''
 -     },
 -     'top_k': 2,
 -     'score_threshold_enabled': False
 - }
 - 
 - 
 - class RetrievalService:
 - 
 -     @classmethod
 -     def retrieve(cls, retrival_method: str, dataset_id: str, query: str,
 -                  top_k: int, score_threshold: Optional[float] = .0, reranking_model: Optional[dict] = None):
 -         dataset = db.session.query(Dataset).filter(
 -             Dataset.id == dataset_id
 -         ).first()
 -         if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
 -             return []
 -         all_documents = []
 -         threads = []
 -         # retrieval_model source with keyword
 -         if retrival_method == 'keyword_search':
 -             keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
 -                 'flask_app': current_app._get_current_object(),
 -                 'dataset_id': dataset_id,
 -                 'query': query,
 -                 'top_k': top_k,
 -                 'all_documents': all_documents
 -             })
 -             threads.append(keyword_thread)
 -             keyword_thread.start()
 -         # retrieval_model source with semantic
 -         if retrival_method == 'semantic_search' or retrival_method == 'hybrid_search':
 -             embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
 -                 'flask_app': current_app._get_current_object(),
 -                 'dataset_id': dataset_id,
 -                 'query': query,
 -                 'top_k': top_k,
 -                 'score_threshold': score_threshold,
 -                 'reranking_model': reranking_model,
 -                 'all_documents': all_documents,
 -                 'retrival_method': retrival_method
 -             })
 -             threads.append(embedding_thread)
 -             embedding_thread.start()
 - 
 -         # retrieval source with full text
 -         if retrival_method == 'full_text_search' or retrival_method == 'hybrid_search':
 -             full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
 -                 'flask_app': current_app._get_current_object(),
 -                 'dataset_id': dataset_id,
 -                 'query': query,
 -                 'retrival_method': retrival_method,
 -                 'score_threshold': score_threshold,
 -                 'top_k': top_k,
 -                 'reranking_model': reranking_model,
 -                 'all_documents': all_documents
 -             })
 -             threads.append(full_text_index_thread)
 -             full_text_index_thread.start()
 - 
 -         for thread in threads:
 -             thread.join()
 - 
 -         if retrival_method == 'hybrid_search':
 -             data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
 -             all_documents = data_post_processor.invoke(
 -                 query=query,
 -                 documents=all_documents,
 -                 score_threshold=score_threshold,
 -                 top_n=top_k
 -             )
 -         return all_documents
 - 
 -     @classmethod
 -     def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
 -                        top_k: int, all_documents: list):
 -         with flask_app.app_context():
 -             dataset = db.session.query(Dataset).filter(
 -                 Dataset.id == dataset_id
 -             ).first()
 - 
 -             keyword = Keyword(
 -                 dataset=dataset
 -             )
 - 
 -             documents = keyword.search(
 -                 query,
 -                 top_k=top_k
 -             )
 -             all_documents.extend(documents)
 - 
 -     @classmethod
 -     def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
 -                          top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
 -                          all_documents: list, retrival_method: str):
 -         with flask_app.app_context():
 -             dataset = db.session.query(Dataset).filter(
 -                 Dataset.id == dataset_id
 -             ).first()
 - 
 -             vector = Vector(
 -                 dataset=dataset
 -             )
 - 
 -             documents = vector.search_by_vector(
 -                 query,
 -                 search_type='similarity_score_threshold',
 -                 top_k=top_k,
 -                 score_threshold=score_threshold,
 -                 filter={
 -                     'group_id': [dataset.id]
 -                 }
 -             )
 - 
 -             if documents:
 -                 if reranking_model and retrival_method == 'semantic_search':
 -                     data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
 -                     all_documents.extend(data_post_processor.invoke(
 -                         query=query,
 -                         documents=documents,
 -                         score_threshold=score_threshold,
 -                         top_n=len(documents)
 -                     ))
 -                 else:
 -                     all_documents.extend(documents)
 - 
 -     @classmethod
 -     def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
 -                                top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
 -                                all_documents: list, retrival_method: str):
 -         with flask_app.app_context():
 -             dataset = db.session.query(Dataset).filter(
 -                 Dataset.id == dataset_id
 -             ).first()
 - 
 -             vector_processor = Vector(
 -                 dataset=dataset,
 -             )
 - 
 -             documents = vector_processor.search_by_full_text(
 -                 query,
 -                 top_k=top_k
 -             )
 -             if documents:
 -                 if reranking_model and retrival_method == 'full_text_search':
 -                     data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
 -                     all_documents.extend(data_post_processor.invoke(
 -                         query=query,
 -                         documents=documents,
 -                         score_threshold=score_threshold,
 -                         top_n=len(documents)
 -                     ))
 -                 else:
 -                     all_documents.extend(documents)
 
 
  |